
Colloids and Surfaces

A: Physicochemical and Engineering Aspects 187–188 (2001) 493–507

Self-diffusion in a fluid confined within a model nanopore
structure

J.M.D. MacElroy a,*, L.A. Pozhar b, S.-H. Suh c

a Department of Chemical Engineering and Conway Institute of Biomolecular and Biomedical Research, Uni�ersity College Dublin,
Belfield, Dublin 4, Ireland

b Department of Chemical and Process Engineering, Uni�ersity of Surrey, Guildford, Surrey, GU2 5XH, UK
c Department of Chemical Engineering, Keimyung Uni�ersity, Taegu, 704-701, South Korea

Abstract

Recent technical improvements in the molecular dynamics (MD) simulation technique have led to re-evaluation of
the transport properties of fluids confined in narrow capillary pores of several molecular diameters in width (or
nanofluids). Coincident with these developments, it has also become clear that unambiguous predictions of the
transport properties of nanofluids may only be made when a rigorous analysis based on statistical mechanical theory
is considered in conjunction with molecular simulation studies. In this paper, the theoretical analysis embodied in the
Pozhar–Gubbins [L.A. Pozhar and K.E. Gubbins, J. Chem. Phys., 99 (1993) 8970; L.A. Pozhar and K.E. Gubbins,
Phys. Rev., E56 (1997) 5367] statistical mechanical theory of transport in strongly inhomogeneous fluid mixtures is
combined with nonequilibrium and equilibrium molecular dynamics techniques to investigate self-diffusion in a dense
fluid confined within a model crystalline nanopore. The results obtained demonstrate that the spatial dependence of
the transport parameters should be taken into consideration to reliably predict the diffusion fluxes within zeolitic
systems. For the comparatively simple pore structure examined in this work, the local self-diffusivity varies
significantly in magnitude over nanometer length scales with corresponding implications for the interpretation of the
rate processes taking place within crystalline nanoporous media. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fundamental statistical mechanical analysis of
the properties of fluids confined within nanopores
is acquiring an increasingly important role in the
design of novel adsorbents and catalyst supports.

One approach which has attracted attention in the
last two decades is direct molecular simulation
using Monte Carlo (MC) techniques (primarily
for equilibrium sorption and phase transitions)
and/or molecular dynamics (MD) methods (for
both transport and equilibrium properties). Dur-
ing this time, however, it has also become evident
that future advances in this area will ultimately
rely on the development of a rigorous theoretical
analysis which can interrelate the microscopic
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properties of the fluid/solid system to the compu-
tational results obtained from molecular simula-
tions. It is this interrelationship, notably in the
area of diffusion transport within nanopores,
which is the subject of this paper.

To date, the molecular dynamics simulation
results reported for diffusion (using either equi-
librium (EMD) or nonequilibrium (NEMD)
methods) have been computed primarily for
model pore structures subject to particular simpli-
fying features (see for example, single pores with
translational invariance or near invariance along
the pore axis [3–9], random media (model silica
[10–12], carbon [13–16] and polymeric systems
[17–23]), or specific zeolite crystal structures [24–
27]). While sharp inhomogeneities in the direction
of flow have been either implicitly (EMD) or
explicitly (NEMD) incorporated in a number of
studies, the intrinsic influence of these inhomo-
geneities have not been investigated theoretically
from a microscopic perspective. Here we consider
NEMD simulations of diffusion of simple model
nanofluids confined within a crystalline pore
structure, which captures the basic geometric fea-
tures of real zeolite channels interlinked by cavi-
ties. The theoretical description of diffusion in
such fluids is supplied by a reduction of a general
theoretical approach due to Pozhar and Gubbins
(PG) [1,2]. The explicit expressions for the diffu-
sion coefficients in the PG-theory involve the
equilibrium structure factors (the fluid density and
the contact values of the fluid–fluid and fluid– lat-
tice molecule pair correlation functions) of
nanoporous systems which are obtained by means
of EMD simulation techniques, and a compara-
tive analysis with the NEMD simulation results
provides the basis for a mathematical model for
the diffusion process suitable for engineering
applications.

In Section 2, the flux equations and the mathe-
matical details for the coefficients resulting from
PG theory for self-diffusion within a nanopore
fluid are presented and the MD simulation tech-
niques employed in this work to compute the
diffusion/permeation characteristics for a simple
pore structure are described. In Section 3, the
results of these computations are discussed and a
simplified description of diffusion in nanopore

fluids in terms of across-the-pore averages of the
local PG-theoretical diffusion coefficients is out-
lined. In Section 4, we conclude the paper with a
brief summary of our results.

2. Theory and simulation

2.1. Quasi-hydrodynamic theory

Intensive studies of the transport properties of
nanofluids (see, for example [28–32]) resulted in a
qualitative theoretical description [33,34] by
Davis, and, subsequently, in the development of
the rigorous, nonequilibrium statistical mechani-
cal theory of inhomogeneous fluids [1,2] by
Pozhar and Gubbins (PG). PG-theory supplies
explicit expressions for the transport coefficients
of inhomogeneous fluids in terms of their equi-
librium structure factors (i.e. the number density
and correlation functions). Recently, this theory
was successfully applied to predict the viscosity of
the Weeks–Chandler–Andersen (WCA) and Len-
nard–Jones (LJ) nanofluids confined in slit
nanopores [35–37], where all other approaches
including direct NEMD simulation methods fail.

In this study, we use the PG-theoretical ap-
proach to evaluate the self-diffusion coefficient of
a very high pressure fluid confined within a nar-
row nanopore reflecting the structure and geome-
try of a typical pore in natural zeolites.
Unfortunately, even for very high pressure bulk
fluids an explicit expression for the self-diffusion
coefficient has not been derived, because such a
derivation involves the equation of state of the
fluid which has not yet been derived rigorously
from microscopic considerations even in the case
of simple fluids composed of structureless
molecules. For similar reasons in the case of the
diffusion coefficients, PG-theory supplies only the
corresponding explicit expression specific to
weakly inhomogeneous fluids of moderate den-
sity. In what follows we analyse and use this
expression in conjunction with the system of inter-
est here, namely that of a high pressure fluid
composed of simple nonreactive molecules which
are confined within a structured zeolite-like
nanopore. Similar to the conventional transport
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theory of bulk fluids near equilibrium (which is a
particular case of the PG-transport theory of
fluids) PG-theory relies on a theoretical description
of the fluid equilibrium state. In those cases, where
the equilibrium thermodynamic parameters are not
described theoretically, any transport theory can-
not provide closed explicit expressions for all the
transport coefficients. In particular, this is the case
with the diffusion and thermal diffusion coeffi-
cients of very dense, strongly inhomogeneous
fluids. With this in mind, we start from Eq. (4.13)
of [2] in the low frequency limit which reduces
significantly for the considered case of the tensorial
‘tracer’ self-diffusion coefficient,

D� T,1*(q)=
3�d(q)

2�2n1*(q)
���

m
D� (q), (1)

where

�d
−1(q)=

�
d�̂ n(q−� �̂)g(q, q−� �̂)

+
�2� fw

2

�2

�
d�̂ nw(q−�fw�̂)

×gfw(q, q−�fw�̂), (2)

and where q is a position within the fluid, �, �w and
�fw are the effective diameters of the hard-core
contributions to the potentials of intermolecular
interactions of the fluid molecules, wall molecules,
and fluid and wall molecules, respectively; �=1/
kBT, kB is the Boltzmann constant, T is tempera-
ture, m is the mass of a fluid molecule; n1*(q), n(q)
and nw(q) are the equilibrium number densities of
the tracer ‘component’ 1*, the fluid ‘mixture’ and
the walls, respectively; g(q, q−� �̂) and gfw(q, q−
�fw�̂) are the contact values of the equilibrium
fluid–fluid and fluid–wall pair correlation func-
tions (PCFs), respectively, and the integrals in Eq.
(2) are over the surface of the unit sphere (�̂ is the
unit vector). The Cartesian tensor D� (q) in Eq. (1)
is defined from Eq. (4.9) of [2] and for the case
under consideration here, can be written in the
form

D� (q)=
1
�

[I+F{n}], (3)

where I is the unit matrix and, generally, F{n} is
a tensorial functional of the fluid density and
composition. When the inhomogeneity of the fluid

becomes large the functional F{n} no longer sa-
tisfies the equation of state specific for a moder-
ately dense weakly inhomogeneous fluid (Eq. (4.7)
of [2]); instead, the proper expression for the fluid
pressure tensor is required to recover the corre-
sponding form of this functional. At present a
general equation of state applicable to the consid-
ered case of a strongly compressed and strongly
inhomogeneous fluid is not available. Therefore,
for the purposes of this study, we focus on the
zero-order contribution to the PG-theoretical self-
diffusion coefficient of Eq. (1), which corresponds
to F{n}=0. This value is a rough approximation
of the self-diffusion coefficient applicable to any
fluid system whatsoever. For the system studied
numerically here the average zero-order theoretical
self-diffusion coefficient so determined lies within
30% of the corresponding numerical ‘experimental’
values found using the nonequilibrium molecular
dynamics (NEMD) simulation method.

If the equilibrium temperature gradients within
the nanofluid are small the number flux of the
component 1*, as provided by Pozhar–Gubbins
theory, can be written in terms of the PG-theoret-
ical self-diffusion coefficient of Eq. (1), the equi-
librium density of this component and the gradient
of the deviation of the nonequilibrium number
density of the component from its equilibrium
value, �n1*(q),

J1*(q)= −n1*(q)D� T,1*(q) � ��n1*(q)
�q

= −n1*(q)DT,1*(q)
��n1*(q)

�q
(4)

where we have incorporated the assumption
F{n}=0 and the observation that

I ·
��n1*(q)

�q
=

��n1*(q)
�q

and where

DT,1*(q)=
3�d(q)

2�2n1*(q)
� �

m�
(5)

is the scalar, theoretical zero-order self-diffusion
coefficient and the dot ‘�’ denotes the inner
product. (One should note that while Eq. (4) is
similar in form to the well known Darken expres-
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sion for the self-diffusion flux, there are funda-
mental differences involved between the Darken
equation and the flux relationship provided by PG
theory. The most notable of these are (i) Eq. (4) is
local with non-local contributions appearing in
the diffusivity as will be shown below and (ii)
gradients of the concentration de�iations from the
equilibrium local state appear explicitly in PG
theory.

From Eq. (5) and using Eq. (4.15) of [2] in the
case of self-diffusion one can obtain the zero-or-
der approximation to the phenomenological self-
diffusion coefficient measurable experimentally,

DP(q)=n1*(q)DT(q)

=
3

2�2

� �

m�
�d(q)

=
3/2�2��/m���

d�̂ n(q−� �̂)g(q, q−� �̂)+

�2� fw
2

�2

�
d�̂ nw(q−�fw�̂)gfw(q, q−�fw�̂)

n
(6)

Introducing the notations

DP
ff(q)=

3
2�2

� �

m�

1�
d�̂ n( q−� �̂) g(q, q−� �̂)

(7)

and

DP
fw(q)

=
3

4� fw
2

� 2�

m�

1�
d�̂ nw(q−�fw�̂)gfw(q, q−�fw�̂)

(8)

one can rewrite Eq. (6) in the familiar form

1
DP(q)

=
1

DP
ff(q)

+
1

DP
ff(q)

(9)

This expression conveniently represents 1/DP(q)
as a sum of the explicit contributions, 1/DP

ff(q)
and 1/DP

fw(q), due to fluid–fluid and fluid–wall
intermolecular interactions, respectively. Of
course, the fluid–fluid contribution includes the
contact values of the fluid–fluid PCF which are
calculated in the presence of the confining walls
and, therefore, incorporate implicitly contribu-

tions due to the fluid–wall intermolecular interac-
tions (or so-called excluded volume effects) as
well. These implicit contributions change dramati-
cally the fluid–fluid PCF and its contact values
compared with those of the corresponding bulk
fluid at the same average density and temperature
(see, for example, results and discussion in [35–
37]).

For convenience, all length scales reported in
this work are in units of the wall atom size, �w

and we define dimensionless forms for the coordi-
nates, q*=q/�w, the densities, n*(q*)=�w

3 n(q*)
and nw*(q*)=�w

3 nw(q*), and the diffusion coeffi-
cients, DP*(q*)=DP(q*)/D0, DP

ff*(q*)=DP
ff(q*)/D0

and DP
fw*(q*)=DP

fw(q*)/D0 where D0=3/2 �(�/
�m)�w. Thus,

DP
ff*(q*)

=
�w

2

�2 � d�̂n*(q*− (�/�w)�̂)g(q*, q*− (�/�w)�̂)

(10)

and

DP
fw*(q*)=

�w
2

�2� fw
2 �

d�̂ nw* (q*−(�fw/�w)�̂) gfw(q*, q*−(�fw/�w)�̂ )

(11)

Of course, Eq. (9) holds for the dimensionless
diffusion coefficients as well.

2.2. Molecular dynamics simulation techniques

The contact values of the equilibrium PCF’s
which feature in the PG-theoretical expressions
can be determined from the integral equations of
equilibrium statistical mechanics as applied to
nanofluids, or using the EMD technique. The
former is the more general and sophisticated ap-
proach, but it involves the development of accu-
rate methods for specification, reduction and
solution of the complicated integral equation
problem. While we believe that such a method
will be available in the near future, we use here
the EMD technique to simplify our task in evalu-
ation of the zero-order approximation of the PG-
theoretical self-diffusion coefficient specific to the
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pore fluid of interest. The EMD algorithm is
analogous to the procedure employed in the
NEMD computations with the exception that in
the case of EMD we consider the pure fluid strictly
at equilibrium and for this reason we restrict our
description of the simulation techniques employed
here to the NEMD procedure alone.

The NEMD simulation of structureless Len-
nard–Jones particles confined within the model
pore structure illustrated in Fig. 1 follows the
basic principles described in detail in earlier work
([8,14,15,38], see also [7,9,13,22,27,39]). The spe-
cific details appropriate to the study undertaken
here are summarised below.

The pore structure shown in Fig. 1 is a sim-
plified model of a nanoporous crystal containing a
central octahedral cage and two square channels
on either side of this cavity. The centre of the
Cartesian coordinate system is in the centre of the
pore with the z-axis running along the pore and
the x- and y-axes orthogonal to the pore walls of
the square channels. The axial half length, L, of

the composite pore was Ls+2.5�2 and four
square channel lengths Ls=3.5�2, 5.5�2 7.5�2
and 9.5�2 were investigated in the simulations
(we note that EMD simulations for the PCFs of
PG-theory were conducted only for the case Ls=
3.5�2). The walls of the octahedron (maximum
dimension d0=8�2) and the square channels
(width ds=3�2) are composed of two dense
face-centred cubic layers of stationary atoms. The
bulk regions to the left and right of the pore
structure are bounded by confining walls at L3=
� (18.5�2+Ls) (see Fig. 1(a)), and in both re-
gions control volumes exist (volumes I in the range
−L2�z� −L1 and II in the range L1�z�L2

where L1= (10.5�2+Ls−5/3) and L2=L1+5/
3) within which the chemical potentials of the
components in the fluid mixture are maintained
constant during the course of the simulations. In
all the simulations, the fluid particles interact with
each other and with the atoms of the pore struc-
ture via the shifted force form of the Lennard–
Jones 12-6 potential

Fig. 1. Model system for nonequilibrium MD simulations. (a) The fundamental cell (imaged in the x and y directions) with control
volumes I and II; (b) side view of the nanopore structure employed in the central region of (a); (c) pore face. (Figures (b) and (c)
are drawn to scale).
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Table 1
Lennard–Jones potential parameters

Component pair �/k (K)� (nm)

148.20.3817CH4�CH4

0.3O�Oa 228.4
CH4�O 0.3409 184

a The oxygen atoms are designated as the wall component
(w) in the body of the text.

motion using Gear’s fifth order predictor-correc-
tor [41] with a time step of 0.0035� where �=
��m/� (=1.376 ps for the methane-like fluid
employed here). During the approach to steady-
state velocity rescaling was employed to maintain
the system at the desired temperature, however,
once steady-state had been reached, the particle
dynamics were thereafter strictly computed at
fixed energy. Furthermore, in the approach to
steady-state, as well as in the steady-state produc-
tion phase of the computations, GCMC control
of the chemical potentials of the species in the
mixture is employed only within the two volumes
I and II. The individual values of � i

I and � i
II are

maintained constant by conducting 250 trial inser-
tions and deletions in each control volume at
every tenth time step in the MD computations.
Steady-state conditions were generally achieved
using this GCMC control in association with
NVE MD computation of the fluid particle trajec-
tories after a period of 0.5×106–2×106 time
steps. Production runs at steady state were then
conducted for up to 5×106 additional time steps.

As noted above, Gear’s fifth order predictor-
corrector was used to compute the trajectories.
However, one modification was introduced to effi-
ciently restart the particle trajectories after each
GCMC control stage in the simulations. Each
time, the control volumes were reconfigured (ev-
ery ten time steps) the 3rd and 4th (as well as the
2nd) order terms in the expansion for the predic-
tion step (and the corresponding terms in the
expansions for v(t+�t), a(t+�t), b(t+�t) and
c(t+�t))

q(t+�t)=q(t)+�t v(t)+
1
2

�t2a(t)+
1
6

�t3 b(t)

+
1
24

�t4 c(t)+
1

120
�t5 d(t)

were computed analytically for each particle in
the system. While this incurs an additional time
cost in the calculations it was actually found that
the computational speed was only reduced by
approximately 10% while ensuring excellent en-
ergy conservation during the NVE phase of the
simulation. Computing d(t) analytically, however,
was not undertaken (this value was restarted as 0)
because this required a greater degree of computa-

� ij
SF(rij)=�ij(rij)−�ij(rcut)−

�d�ij(rij)

drij

�
r cut

(rij−rcut) rij�rcut

=0 rij�rcut

(12)

with

�ij(rij)=4�ij
���ij

rij

�12

−
��ij

rij

�6�
where rcut is the cut-off distance, 2.5�ij, and �ij

and �ij are the codiameter and potential well depth
for particles i and j, respectively. The potential
parameters employed in this work (methane-like
fluid and oxygen wall atoms) are summarised in
Table 1.

To initiate a given simulation, the upstream and
downstream chemical potentials, � i

I and � i
II, re-

spectively, of the counterdiffusing species are se-
lected, and the grand canonical Monte Carlo
(GCMC) algorithm proposed by Adams [40] is
employed to accumulate fluid particles in the ac-
cessible volume in the range z�0 (� i

I) and in the
range z�0 (� i

II). Typically, 105 GCMC events
(insertion or deletion of a particle followed by a
particle move) were conducted in these computa-
tions and the chemical potentials were selected so
that the bulk density of the fluid on either side of
the fundamental cell was n*=0.5 in units of the
inverse cube of the fluid particle size �. To com-
plete the initialisation stage of the simulation (in-
cluding the approach to steady state) particle
velocities are assigned from the Maxwell–Boltz-
mann distribution function at the specified tem-
perature (T*=kT/�=1.5 in all of the simulations
reported in this work) and the particle trajectories
are computed by solving Newton’s equations of
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tional time with only a minor improvement in
energy conservation.

The steady-state fluxes are determined by moni-
toring the net transfer of particles across one or
more planes within the system. The steady-state
flux in the z-direction is computed using

Ji
z=

1
LxLy

(Ni
+−Ni

−)
�t Np

(13)

where Ni
+ and Ni

− are the total number of particles
of component i which have drifted downstream (in
the direction of net flow) and upstream (counter to
the direction of net flow), respectively, normal to
a total number of Np planes of cross-section
LxLy=200 (in units of �w

2 ) during an observation
time �t. In this work Np=3 and the planes were
located at z= −L, 0 and +L.

In addition to providing particle fluxes, the
nonequilibrium simulations will also give full de-
tails of the species concentration profiles from
which one may either determine global permeabil-
ities or local transport coefficients. The former are
easily defined by

Pi=
Ji

z

(nB,i
I −nB,i

II )
(14)

where nB,i
k is the concentration of component i in

control volume k (k=I or II). The manner in which
the local transport coefficients are determined from
the NEMD results will be described later in Section
3.2.

3. Results and discussion

3.1. EMD simulations

The local values of the equilibrium fluid number
density and the fluid–fluid and fluid–wall PCF
contact values that are required to calculate the
theoretical values of the tracer self-diffusion coeffi-
cient in the zero-order approximation, Eq. (1), have
been simulated using a rather straightforward 3-di-
mensional generalisation of the method described
in [35,36]. The data obtained have been used to
calculate, DP

ff*(q*), DP
fw*(q*), DP*(q*), their across-

the-pore average values specific to each of the
z-bins, DP

ff*(z*), DP
fw*(z*), DP*(z*), respectively, and

Fig. 2. Zero-order approximation for the across-the-pore aver-
age of the PG-theoretical self-diffusion coefficient for the pore
system. The horizontal line corresponds to the overall average
value of the theoretical self-diffusion coefficient.

the total average DP* values for the square channels,
the octahedral cavity and the entire pore. These
results are illustrated in Figs. 2–9. Due to restric-
tions on available computational resources which
did not permit extra ‘fine’ division of the pore space
into bins for the memory demanding requirements
involved in the calculation of the PCF contact
values, the entire pore system was divided into
30×30×60 bins in the x-, y- and z-directions,
respectively, where the z-axis coincides with the
axis of the pore system (Fig. 2). Therefore, the PCF

Fig. 3. Zero-order approximation for the across-the-pore aver-
age of the PG-theoretical self-diffusion coefficient for octahe-
dron cavity. The horizontal line corresponds to the average
value of the theoretical self-diffusion coefficient.
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Fig. 4. Zero-order approximation for the across-the-pore aver-
age of the PG-theoretical self-diffusion coefficient for the
square channel. The horizontal line corresponds to the pore
averaged theoretical diffusion coefficient.

state has been independently determined using
traditional EMD procedures [43] to be 3.4×10−4

cm2 s−1. The average zero-order theoretical value
of the nanofluid self-diffusion coefficient specific
to the entire pore is 0.894×10−4 cm2 s−1 (second
row of Table 2), which is four times smaller than
its bulk fluid value. In the square channels this
coefficient drops to 0.483×10−4 cm2 s−1, which
is seven times smaller than the corresponding bulk
value. Much of this decrease is due to direct
fluid–wall intermolecular interactions. The re-
mainder comes from implicit effects of these inter-

Fig. 5. (a) The open squares represent the average fluid density
(based on pore cross-section d s

2) for z-bins within the left
square channel shown in Fig. 1, and the curve corresponds to
a fit by B-splines. (b) The fluid–fluid and fluid–wall contribu-
tions, DP

ff/D0 (open squares) and DP
fw/D0 (open triangles),

respectively, to the zero-order approximation of the across-
the-pore average of the PG-theoretical self-diffusion coefficient
for the square channel. The horizontal lines correspond to the
average values which in each case are �DP

ff/D0� =0.0372;
�DP

fw/D0� =0.0062; and overall (the filled circles) �DP/
D0� =0.0178.

contact values obtained for the entire system (in-
cluding the central octahedron unit (Fig. 3)) were
computed rather ‘coarsely’. To simulate the con-
tact PCF values more accurately (at least for part
of the system), we also divided one of the square
channels into much finer bins, again dividing its
space into 30×30×45 bins in the x-, y- and
z-directions. The contact values of the PCFs so
obtained lead to much better agreement between
the theoretical and NEMD values of the average
diffusion coefficient for the channel than for the
central unit (see Figs. 4, 5 and 9) as may be
observed from the results summarised in Table 2.
The magnitudes of the individual fluid and wall
terms in the self-diffusivity which are reported in
Fig. 5(b) also confirm an intuitive expectation
that the direct contribution to the self-diffusion
coefficient of the pore nanofluid due to the fluid–
wall intermolecular interactions within the very
narrow channel are largely responsible for the
significant decrease in the value of the self-diffu-
sion coefficient relative to the bulk. The average
number density of the confined ‘methane’
nanofluid in fluid �-units, n f*=n�3, is 0.40�0.04
(it is noteworthy that bulk methane at this density
and temperature possesses a pressure of about 220
atm [42]) and the self-diffusion coefficient for the
model methane Lennard–Jones fluid in the bulk
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Fig. 6. Zero-order approximation of the PG-theoretical self-diffusion coefficient for the entire pore system in the plane y=0.

actions in-built into the contact values of the pore
fluid–fluid PCF and the pore fluid number den-
sity. The theoretical self-diffusion data contain an
average statistical error of about 20% after 9
million time steps of the EMD simulations. This
error emerges primarily from calculations of the
contact values of the PCFs (especially the fluid–
wall PCFs). This error can be made much smaller
provided much smaller bin sizes and much longer
EMD simulations runs are adopted. Our compu-
tational facilities did not permit such bin refine-
ment or increase in time in these preliminary
computations.

3.2. NEMD simulations

To compare the theoretical predictions for the
self-diffusion coefficients within the pore em-

ployed in the earlier section (Ls=3.5�2) with
molecular simulation, we have computed the
steady-state particle number flow and the ‘species’
concentration profiles along the axial direction of
the pore using the NEMD technique described
earlier. The average value of the particle diffusion
flow for this system was found to be 14.1�0.7
fluid particles per nanosecond and the correspond-
ing ‘species’ concentration profiles are shown in
Fig. 10. These profiles are the porous medium
cross-section averaged results (area=LxLy) ob-
tained for individual axial z-bins of width 0.05×
�2�w, and to extract reasonable estimates of the
diffusion coefficients the following procedure is
employed. The average NEMD values of the self-
diffusion coefficients, DNEMD, are found from a
correlation similar to Eqs. (4) and (6) which, on
averaging over the cross-section, provides
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J� 1*
z =

1
A
�

J1*
z dxdy=

−�
�

�

�

�

�
DP(q)(��n1*(q)/�z)dxdy�

(�� n1*(q)/�z)dxdy
�
�

�

�

�

1
A
� �� n1*(q)

�z
dxdy= −D� P(z)

�� n̄1*(z)
�z

(15)

To qualify the comparison with the averaging
conducted on the PG-theoretical results it should
be noted that, while the cross-section averaged
flow J� 1*

z A is independent of z at steady state, this
is not necessarily true of either the averaged diffu-
sion coefficient or the gradient of the averaged

deviation of the nonequilibrium concentration
from its equilibrium local value as defined by Eq.
(15). One should also note that the averaged
diffusivity defined by the above expression is not
precisely the same as the cross-section averaged
diffusivity computed from PG theory unless the
concentration deviation �n1*(q) is independent of
x and y. The latter is a reasonable assumption for
pores with smooth walls without geometric inho-
mogeneities such as varying pore cross-section in
which case the x and y components of the diffu-
sion fluxes J1*

x and J1*
y should be negligible. How-

ever, for pores with atomistically structured walls
and/or varying cross-section the deviation of the
non-equilibrium fluid density from its equilibrium
value exhibits a strong dependence on all the

Fig. 7. Zero-order approximation of the PG-theoretical self-diffusion coefficient for the central cross-section of the octahedron cavity
at z=0.
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Fig. 8. Zero-order approximation of the PG-theoretical self-diffusion coefficient for the central cross-section of the octahedron cavity
at y=0.

coordinates [36,44]. In conjunction with diffusion,
this means that the flux components cannot be
assumed to be negligible locally.

The concentration deviation �n̄i(z) also intro-
duces a complication into the analysis since in
general for the self-diffusing fluid under consider-
ation here we do not have direct access to numer-
ical estimates of the equilibrium local
concentrations of both ‘species’ which appear in
this deviation. In principle this problem can be
avoided by locally integrating Eq. (15) over z
between two axial positions which are isomorphic
to one another. However, if this approach is
employed, it may be readily shown that the effec-
tive diffusivity so obtained depends on the specific
isomorphic state selected and this problem can be
traced back to the fact that locally both J1*

x and

J1*
y are strictly nonzero in the system under con-

sideration in this work. Therefore, it is necessary
to introduce a second local averaging over a
narrow range of axial bins to, in effect, cancel the
negative components of these fluxes with their
positive contributions. This averaging is done in
such a way that the modified concentration de-
viations correspond to coarse grained isomorphic
states separated by a distance Liso and distributed
along the axial direction of the pore. This is
equivalent to a local volume averaging of the
concentrations in isomorphic states i.e.

1
Liso

�
�n̄1*(z)dz=�ñ1* (16)

and in view of the cancellation of the equilibrium
concentrations between these states we approxi-
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mate the gradient in Eq. (15) by �ñ1*/�z where
�z�Liso. In all of our calculations of this gradi-
ent we have taken Liso to be equal to the lattice
spacing, �2�w, of the solid surface. We also note
that only the square channel will be examined
here (with one exception to be discussed below)
since the z-varying cross-section of the octahedral
cavity precludes a reliable assessment of the diffu-
sivity by this method without explicit details of
the equilibrium local concentrations of the ‘spe-
cies’ as functions of x and y, as well as z.

The results of this analysis in the form of the
pore averaged diffusivity for the square channels,
DNEMD, within the short pore structure are re-
ported in Table 2. The deviation of the theoretical
value and the value of the self-diffusion coefficient
obtained using the heuristic treatment Eqs. (15)
and (16) of the NEMD data is approximately
−15%. In view of the approximations inherent in
the averaging procedure described above and the
fact that the PG theoretical values themselves

were calculated in the zero order approximation
we can conclude that the results agree exception-
ally well.

In Table 2, we also report an estimate for the
self-diffusivity within the octahedron. Note that
this value deviates more significantly from the
PG-theoretical averaged value than does the cor-
responding value for the square channel and, as
noted above, we believe this results from the
greater influence of the x–y dependence of the
gradients appearing within the averaged diffusiv-
ity in Eq. (15). In practice, therefore, we suggest
that Eqs. (15) and (16) should not be used for
pores with strong geometric inhomogeneities (e.g.
the octahedron in the present case or sphere-like
cavities in zeolites) unless details of the q-depen-
dence of the concentrations are available.

To further assess the possible influence of the
nanometer scale inhomogeneities at the entrances
and exits of the square channels we have con-
ducted NEMD simulations for three additional

Fig. 9. Zero-order approximation of the PG-theoretical self-diffusion coefficient for the square channel in the plane y=0.
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Table 2
The self-diffusion coefficient of the pore nanofluid

Central octahedron sectionPore section Entire poreSquare channel

Theoretical average value, DP×104 (cm2 s−1) 1.2320.483 0.894
0.57 0.76 –NEMD value using Eqs. (15) and (16), DNEMD×104

(cm2 s−1)
62.1(DP−DNEMD/DNEMD)×100% –−15.2

pores containing square channels of the same
width but of different length. The overall system
permeability obtained using Eq. (14) is plotted as
a function of the sum of the two square channels
lengths in Fig. 11, and while it would appear that
the simple linear formula

1
P

=
1

P0

+
2Ls

Dapp

(17)

fits the results, this is deceptive and indeed incor-
rect, particularly for the shorter pores. A clear
indication of this is the negati�e intercept, which
the simplified correlation provides. A closer anal-
ysis of the NEMD concentration profiles using
the method described above with reference to Eqs.
(15) and (16) provides the coarse grained diffusion
coefficients shown in Fig. 12. It is clear from the
results for the three longer square channel pores
that the pore mouth connecting the bulk fluid or
the octahedral cavity to the square channels on
the upstream side of these channels significantly
influences the apparent magnitude of the self-dif-
fusivity over a square channel length scale com-
mensurate with the actual length of the shortest
pore (Ls=3.5�2�w). For the longer pores, how-
ever, the results suggest that an interior square
channel diffusivity of approximately 0.45×10−4

cm2 s−1 is obtained for both channels. We em-
phasise that this result cannot be readily obtained
from Eq. (17) and it is only on the basis of
guidelines implicit in PG theory (notably diffusion
forces proportional to gradients of the concentra-
tion de�iations) coupled with details of the
nonequilibrium profiles that such an analysis can
be carried out.

4. Conclusions

The self-diffusivity of a Lennard–Jones fluid in
a model crystalline nanopore as calculated to zero
order in the rigorous statistical mechanical theory
of Pozhar and Gubbins [1,2] and results obtained
from NEMD simulations processed via Eqs. (15)
and (16) have been shown to agree to within
−15–63%. Due to the heuristic nature of the
analysis of the NEMD data to obtain the final
results, and also the zero-order approximation to
the theoretical self-diffusion coefficient, the num-
bers reported here should be viewed as qualitative
estimates rather than definitive values for the
nanofluid diffusion coefficients within the system

Fig. 10. The non-equilibrium density profile of the counterdif-
fusing components expressed in the units of �3 specific to the
fluid atomic diameter. z* is in units of �2�w.
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Fig. 11. The inverse permeability P (in units of �w/�) as a
function of the overall length 2Ls (in units of �w) of both
square channels.

neous fluids and, in general, extreme care should
be exercised when attempting to interpret local
transport behaviour from coarse-grained data.

A fundamental problem, which we believe con-
tributes to the necessity for introducing the aver-
aging involved in Eqs. (15) and (16), is that the
nanofluid transport coefficients are non-local, as
demonstrated extensively by PG-theoretical analy-
sis and recent MD simulations [36,44]. To de-
scribe the system evolution in terms of
coarse-grained data one would need to develop a
theoretical description of the physical mechanisms
that are responsible for the emergence of the
collective modes of many-particle systems from
the chaotic thermal movement of the particles,
and this is exactly the major task of rigorous
statistical mechanical theory. PG theory provides
a rigorous framework together with general re-
sults on the transport coefficients and, as demon-
strated in this work, offers a number of
possibilities for simplification of the theoretical
expression(s), in particular for the diffusion coeffi-
cients of nanofluids, for practical use in engineer-
ing design. While further work is still required to
specify particular engineering models, it is appar-
ent that a fundamental problem, namely the inter-
relationship of the microscopic dynamics and the
atomistic and geometric structure of the nanopore
system, now has a tractable solution.
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