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We present a functional perturbation theory (FPT) to describe the dynamical behavior of 
dense, inhomogeneous fluid mixtures, and from this show rigorously that the generalized 
Langevin equations are a first order form of this FPT. These equations lead to linearized 
kinetic equations for the singlet dynamical distribution function and for the higher distribution 
functions. These kinetic equations for inhomogeneous fluid mixtures reduce to those of Sung 
and Dahler [J. Chem. Phys. 80,3025 (1984) ] in the case of homogeneous fluids. Finally, we 
prove that the kinetic equations derived can be used to derive a “smoothed density” postulate, 
in which the local transport coefficients for inhomogeneous fluids are equated to those for a 
homogeneous fluid of the same smoothed density. 

I. INTRODUCTION 
Although several theoretical approaches to the micro- 

scopic theory of transport processes are available for homo- 
geneous fluids,‘-’ there have been few attempts to develop 
the kinetic theory for strongly inhomogeneous fluids, and in 
particular for inhomogeneous fluids of liquid-like density. 
Such a theory is needed for the study of fluids near interfaces 
and in microporous media,“’ where the pores are often in 
the size range 5-20 A. The most successful approach to such 
fluids was suggested’ and later developed”*’ ’ by Davis and 
co-workers; it was based on an intuitively reasonable exten- 
sion of the revised Enskog theory.‘~‘4 At an ad hoc level, it 
has been postulated that local transport coefficients in inho- 
mogeneous fluids can be set equal to those for a homoge- 
neous fluid whose density is set equal to some “smoothed” 
density obtained by averaging over densities in the immedi- 
ate region of the point of interest in the inhomogeneous sys- 
tem.i5 Such an approach follows the successful use of such 
smoothed density ideas for equilibrium inhomogeneous 
fluids; although the use of such smoothed densities rests on 
rigorous foundations for the equilibrium case,16 no analo- 
gous foundation exists so far for their use for nonequilibrium 
fluids. 

In this work we present a new attempt to establish a 
more rigorous microscopic theory for the description of non- 
equilibrium behavior of strongly inhomogeneous tluids, and 
in particular liquids. The approach is based on the general- 
ized Langevin equation (GLE) method originally suggested 
by Zwanzig,17 generalized and developed by Mori,‘* and 
heuristically extended by Akcasu and Duderstadt.19 As a 
method of deriving time evolution equations for time corre- 
lation functions of fluids, the GLE approach has proved its 
usefulness over almost three decades.2G24 The GLE ap- 
proach has also been used as a starting point for deriving 
kinetic equations by Sung and Dahler,2’V26 who showed that 
mean field kinetic equations (MFKEs) for homogeneous 
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fluids obtained in such an annroach were identical in form to -- 
the linearized version of the revised Enskog equationsi 
(REEs) for hard sphere mixtures. These REEs have been 
proved13*14 to be consistent with the Onsager reciprocal rela- 
tions, for which an entropy functional exists. The important 
difference between MFKEs and REEs is that the structure 
factors (radial and direct correlation functions) take into 
account the soft attractive intermolecular forces in the for- 
mer case, whereas they do not in the latter. Thus MFKEs 
lead to hydrodynamical equations and transport coefficients 
which are in good agreement with experimental data for den- 
sities and viscosities of homogeneous liquids. The MFKEs 
can be regarded as an extension of REEs to fluids with inter- 
molecular interaction potentials that include soft attractive 
parts. Also, the MFKEs were proved2’ to coincide with 
analogous equations of linearized kinetic variational theo- 
ry. 5.27 

The theory for inhomogeneous fluids presented here 
was inspired by the work of Sung and DahlerZ6 for homoge- 
neous fluids. In Sets. II and III we develop a functional per- 
turbation theory (FPT) scheme and prove rigorously that 
the GLEs of Refs. 18 and 19 can be considered to be exact 
equations of the first order FPT with respect to thermal dis- 
turbances of the collective dynamical variables. Attempts to 
develop such a scheme were taken originally by Sauermann 
et a1.28 for dynamical systems under the time-dependent ex- 
ternal fields, and by Pozhar” for scalar dynamical variables 
describing time evolution of dynamical systems with ther- 
mal disturbances. In the present investigation we develop 
ideas of Ref. 29 for vector dynamical variables. The FPT 
scheme developed below is based on (a) the Liouville equa- 
tion for collective dynamical variables, together with (b) 
functional Taylor expansions of the time derivatives of these 
variables, and (c) some specific mathematical features of the 
Laplace transforms. In the framework of the FPT, the GLE 
is a linearization of the more complicated equation describ- 
ing time evolution of the collective dynamical variables. 
Thus the GLE leads to linearized kinetic equations, both for 
singlet distribution functions and more complicated correla- 
tion functions of fluids. The FPT scheme also permits us to 
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derive nonlinear master equations for collective dynamical 
variables of the n-th order with respect to thermal distur- 
bances of the collective dynamical variables. These could be 
of significant interest for the description of the time evolu- 
tion of dynamical systems with strong memory effects. 

In Sec. IV we extend Sung and Dahler’s approach,26 
and use the GLEs to derive mean field kinetic equations for 
singlet distribution functions of strongly inhomogeneous 
fluid mixtures; these reduce to the MFKEs of Sung and 
Dahle? if the equilibrium numerical densities of the com- 
ponents are independent of coordinates. At the end of Sec. 
IV we analyze the equations derived, and establish their 
compatibility with the “smoothed” local density postu- 
late,” in which local transport coefficients for inhomogen- 
eous fluids are equated to those for a homogeneous fluid of 
the same smoothed density. 

II. MAIN ASSUMPTIONS AND EXPANSIONS OF 
COLLECTIVE DYNAMICAL VARIABLES 

We choose a set of N collective dynamical variables 
{B, (q,p,t)) where i. = 1,2,...N, that are sufficient for a com- 
plete description of the system’s collective behavior; for ex- 
ample, for a fluid mixture system these dynamical variables 
would include the phase space densities of species, momenta, 
angular moments, and energy. For further convenience, and 
without loss of generality, we can consider their invariant 
parts to be zero, and that the ergodicity conditions hold, 

s 

T 

lim ( l/T3 Bi (q,p,t)dt = 0. (2.1) 
T-m 0 

We expect” the first time derivative ofB, (q,p,t) to take the 
form [Though q,p above are independent of t, we use the 
notation (d /dt) for the derivative to stress the fact that 
Bi (q,p,t) depends on t through the coordinates and mo- 
menta qa( t) ,p”( t) of particles from the dynamical system, 
which we-have not included explicitly as arguments of the 
Bi*] 

$ Bi (q,Pst) = F(q,P,t) 

= F, [{B, (m~)$‘f+ 1, 

co>x,u> - co, w>to] + F:“(q,p,O, 
(2.2) 

where FI [ ] is an operator acting in a Hilbert space of the 
dynamical variables and depending on the previous history 
Of{Bi (q,PJ)}L i, and F2 (q,p,t) represents contributions of 
other degrees of freedom of the system. Due to our choice of 
{B, (q,p,t))F= , with invariant parts equal to zero, and con- 
sidering Fl [ ] as an analytical operator and setting to = 0, 
we can rewrite (2.2) in the form30*31 

$&(p,t) =J$ g-*5 

j<k<.-.<m = I 

xldr, -;rnj-;m du, *I-dun 

X@$..,,, (p&-r ,..., rn,u, ,..., II, )B, (u,,~,) 

X’ *** X&(u,,r,)Bj(u,,r, > + Fa”(p,t), 
(2.3) 

where we have used a Taylor series for the operator F, [ 1, 
and p to denote C&p), and u to denote dummy variables 
(u,x) of integration. We require the functions O&,, and 
contributions F$‘(p,t) to belong to the space C m of infinite- 
ly differentiable functions. Also, for most dynamical systems 
we can expect that the a$?. .m are symmetrical functions 
with respect to any permutation of their arguments in sets 
C” I ,..., II,,} and {rl ,..., r,,}, and also 

O$Lm (p&r ,?..., rn,u 1,“. u,) 

= o$?..m (p;t- 7, )..., t- r,,u, ,..., u,). (2.4) 
In order to make practical use of (2.3) we should restrict our 
consideration to some limited number M terms in the sum in 
the right-hand side of (2.3), so that the other terms with 
n > Mare included into F ii) (p,t) . We should emphasize here 
that the idea of a collective mode description of the many- 
body system time evolution assumes that the restricted sum 
in the right-hand side of (2.3) defines the evolution, so that 
F 2 (p, t) should be thought of as terms of the next order with 
respect to the M-th term in the sum. We now make the M- 
multiple Laplace-Carson (LC) transforms32.33 of Eq: 
~2.3)~ 

LCCf(t)> =f(z> = zlrn e -“f(t)dt. (2.5) . 
For the lirst order terms in Bi (u,t) in the right-hand side of 
(2.3), after changing the order of integration and integrating 
by parts, we obtain f 
LC @~‘[(~,t;Qii)B~ 

= 21 dt e - “‘0~7 (p,t;r,ii)B, (ii,r) 

=,z, m~o+$;:‘, O-$&iJW, (2.6) 

where the coefficients Cf (u) are complicated combinations 
of Oc’(p,t;r,u) and its’ derivatives with respect to r and/or t 
calculated at t = r = 0. Here and elsewhere in this paper we 
use the standard convention of integrating over the domain 
of an overscored variable, e.g., 

f(%ykmv) = 
s 

duf(u,yk(u,v). 

Since the LC transform in the left-hand side of Eq. (2.6) 
is a function of z1 and is uniquely determined by its LC pre- 
image 16 O~f’(p,t;r,ii)B,(ii,r)dr, the whole sum on the 
right-hand side of (2.6) has to converge to the result of the 
LC transform of the left-hand side. On the other hand, the 
coefficients Cj (u) are numbers at every given u, so the 
whole dependence of the series 8, in the right-hand side of 
Eq; (2.6) on z, is represented by factors l/z:‘+ m, that multi- 
ply Cf (u). Also, each series X, is multiplied by Bk (u,t) or 
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it’s derivatives calculated at t = 0, which are also indepen- 
dent of z, at every given u. (I 

I 
LC O~‘(p,t;r,ii)B, (ii,r)dr 

0 . 
Thus, it follows from the above that at every given u 

I 

each series IX,,, should converge to one unique function of z, , 
say, 6 i(k) (p;z, ,u> which is the sum of the corresponding se- 

= ,&yk’(p;zr,a) dfB~~~~. (2.7) 

ries. Since the space of LC images of infinite differentiable 
functions is complete, the sums 6 i(k) ( p;z, ,u) should belong Reasons analogous to those given above permit us to 
to this space. Thus expression (2.6) could be written in the obtain the LC image of the n-th term in the sum from the 
form right-hand side of Eq. ( 2.3 > , 

I 

*“drM@j.?..,(pM,, . . . . T,,,E ,,..., ~i,)B,(Ii,,r,)~...~Bk(U2,r2)Bj(u,,r,) I ..I.. 

= 2.. .E g--fy~~~~(~,~, ,...,= .,z ,,..., iii,) d’nBm (inpo) x.. . x d f2B;::,,o) 

dt In 
d f’Bj(iil?o)s’ 

.- dt ‘,- l,,....l” = 0 
(2.8) 

I. 
where the functions 5 I?:;,;‘“’ have a meaning analogous to the functions c f’“’ above. :\m:&z~ 

Thus, the result of the M-multiple LC transforms of Eq. (2.3) has the form x 
.~ 

B,(p,z, > =B,(p,O) +tnt, f $--$ ~-~~;~:;,:“‘(p;z ,,..., z,,ii, ,..., ii,) 
j ikC..*wn l,,...,l,, - 0 

- 
" 

x d’“B,, (K,O) 
., 

x x &f,,; **- 
d”Bj(&,O) 

dt ‘I 
= +-LF:“(pz ) 21. (2.9) 

Zl 

We can now make the inverse M-multiple LC transforms of (2.9) with respect to t, = t2 = * * * = t, = t to obtain an 
expansion 

B,(p,t) = $, -&$< *-- -j, F I::~~~- du, . ..du.~f~ik:~,;m)(p,t;.u,,...,un! 
1, II --m 

-- 
n 

>( a’%n (u,,,O) . . . d “B,(u, 4) 
dt ‘J1 

x x 
dt ‘I 

+ P:“(p,t). (2.10) 

where functions .$ $!!:;,;“” (p,t;u , ,..., u, ) are defined uniquely by their LC preimages, .!J $!!:j;~’ (p;z, ,..., z, ,u, ,..., u, ), and 
i75”(p,t) = LC - ‘{(l/z, IF, (p,z, )}. 

The expansion (2.10) can be written in more compact form if we introduce column vectors . 

A; ,...,,, (u,;*w,,r,,**~,) = 

d "B, (u,, ,r,, ) _____ ...xdf2B,(u2,r,) XdfnB,(u,,r,) 
dt fn 

x 
dt ‘1 dt ‘I 

d “B, (i,, ,r, ) . . . 
dt’- 

x x 
d”Bk (uz,rz) xd “Bj tti, ,r, ) 

dt” dt’l . . . 

d “‘B,:(u, ,r,, ) 
x x . . . d”B,?u,r,) Xd’sB,iu,,r,) 

dt I1 dt’l I & ~1 

and, in particular, 

B, (p,t) 
A:,(P,O = : 

B, (p,t) 

I 

(2.11) 

<P;-““(p,t;u, ,...u, ) 

rB(p,t). 

I .: 
Then from Eqs. (2.10) and (2.11) we can obtain a matrix 
form of the expansion (2. lo), 

B(p,t) =~;g, +!%Ap,f;ii, ?...Y ii,) ‘* 1 ,_ 

; l A”(ii;+i,) +&(p,t), -(2.12) 

where the matrices A” (u, * * our ) are composed of column ._. 
vectors AZ.. f above, calculated at r1 = r, = * * * r, = 0, the 
dot l denotes matrix’product, and matrices a, (p&u1 * * *II,, > 
are composed of row vectors 
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unit matrix. Then the inverse LC transform of Eq. (2.15) 
gives 

h2 (p, t) is the co11 Imn vector 

&,‘(PJ) 
, 

k (N) (PA 
and 

6 ;;.I{” (p,ty I,..., “,> = 2 ~~.V:~,qp,t;u, )..., u,). 
m=l 

Further on we also use the vectors B”=&. . .o; vectors &. ... 
are defined by Eq. (2.11). We  should emphasize that the 
expansions (2.10) and (2.12) have been derived from Eq. 
(2.3) without any restrictions on the functions 
O~~~..m(p,t;r,...r,,u,,... II,, ), except their infinite differen- 
tiability. If we now use the physically reasonable restriction 
(2.4)) then the right-hand side of Eq. (2.3) will contain con- 
volutions. As a result, in assumption (2.4) the expansion 
(2.12) of the vector B(p,t) will contain only vectors 
&...,(“,“‘“,). 

B(u,t) = A- ,(p,t,u)S(p - u).B(u) 

+ r 
Jo 

ld7 A- ‘(p,t - r,u)S(p - u)*F2 (u,r). 

From above we can now see that the expansions (2.10)- 
(2.15) have the character of the projection of a  vector upon a 
system of mutual orthogonal vectors from the sets 
A{A”(u, ..*u,)]f”or A={B”(u, * * u, ) IF. It is possible to 
obtain such expansions because the LC (or L) transforms 
have the property of introducing f( 0) when transforming 
time derivatives of any functions f( t) . 

The expansions (2.10)-( 2.15’) are of limited use until 
we use some additional properties of the collective dynami- 
cal variables. Their main property is that their time evolu- 
tion is governed by the Liouville equation. In Sec. III we use 
this fact together with results of this section to construct a 
projection operator technique. 

In the vector notations above the expansion (2.3) can be 
rewritten in the form 

B(PJ) = “El -$lzdrl *.*dr,, 

X0, (p;t - r, ,..., t - r,,ii, ,..., ii,) 
ables, which are all functions of vectors (B(p,t) 1, where 
(B(p,d 1 are column vectors composed of collective dynami- 

l B”(ii, - * *ii, ,r, -**r, 1  + k (p,t>, (2.13) cal variables CBi (p,t) ]y whose invariant parts are set equal 
tozero.Let(FIG),(F],(G]&?‘beascalarproductinZ’.In 

where the matrices 0, are composed of row vectors addition to the standard properties of a  scalar product, 

0. . r(W.! .m ,..., O$$.m ). Then the LC transforms of 
EC (T.13) g:e 

WP,, . * * P, J) IG(P, . * *P, ,t 1  

= [(G(P, . ..~.,t)lF(p;.-p,,t))]t; 

B(PJ,) =B(P) +$j (l,~!,~,z,) 
(G(P, . . *P, J) I G(P, * . *P, ,t) ) > 0, 

V(G(P,, . . ‘PI J) I #O; (3.1) 

x0, (p;z, ,..., zn2ii, ,..., ii,) ci4 (P, . . .P, ,t) I WP, . . *P, A 

l B”( i& * * ‘ii, ,z, * * -z, > + $4 (p,z, >, (2.14) 

where matrices 0, are defined uniquely by their LC pre- 
W ’I,(GI@ , an d c, are numbers, we require that the Liou- 

images, 
ville operator L, 

O,(p;t-r ,,..., t-,r,,u,..*u,). 
Since Eq. (2.14) holds for any zf we have derived, in 

ill 
I 

,$ g$ - $-$, 
J i 

(the classical case) (3 2) 

fact, a  system of nonlinear algebraic equations for B(p,z, ) IWfi) If& I, 
/ J 

(the quantum case) 

(due to the structure of the vectors B”(u, ***u, ,z, .+*z, )) be Hermitian” with respect to the scalar product (3.1) . In 

which could be solved, for example, by an iteration proce- (3.2) His the Hamiltonian of the dynamical system in ques- 

dure.34 In the first order FPT Eq. (2.14) has an exact solu- tion, rj,pj denote the coordinate and momentum of thej-th 

tion which generalizes Mori’s one,,’ particle, respectively, and t in Eq. (3.1) means Hermitian 

B(u,z, 1  = A - ‘CP,Z, ,u)&P - u).B(u) 
conjugation, and [ , ] denotes commutator. 

A collective dynamical variable (B(p,t) I&’ is gov- 

+ 3 - ‘(PA ,“M(P - “)*I$ (u,z, ), 
erned by the Liouville equation 

(2.15) -$B(p,t) I = iL < B(w) I, 

where A - ,(p,z, ,u) is the matrix inverse of the matrix whose formal solution has the form 

A(P,z, ,u) = [S(P - “)I- (l/.$ )@, (p;z, ,u) ] and I is the @(PA I = exp[tiL I (B(p) I, (3.4) 
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Ill. PROJECTION OPERATOR TECHNIQUE 
We  consider a Hilbert space %  of the dynamical vari- 
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Y; (tA ‘;{p); {P’);^ where we have omitted the index t = 0 in the right-hand side 
of (3.4) and will use analogous reduced notation below. 

Since (A ‘(p, * **pl ) Iti are also dynamical variables 
from Z’ they should be governed by the Liouville equation 
as well. Below, in order to treat the most general case, we 
consider the l? number of dynamical variables 
(A ‘(p,* * * -pl ) IgA with If n, because the method of organi- 
zation of vectors (A ‘(p, * * *pl ) 1 in sets A and the enumera-’ 
tion of vectors in the A is not unique. 

= ,$, (A ‘(P, . ..~.,t)lA’(U~...li,)) 

X(A’(iik...iiI jlAj(p:,..*p;))-‘. (3.79 

Due to the absence in (2.10)-( 2.15’) of terms of the 
form (A ‘(P,~ - * ‘pl 9 I& (P, . . -p, ,t) ), these expressions can 
be considered to be expansions of the vectors (B(p,t) Ieon 
the systems of the mutual orthogonal vectors from 
A={(A’(p;e-p, 9I)fand (F,(p,t)lH, 

Below we also use symbols V/j(A ‘;{p};{p’};^), 
‘@j (tA ‘;{P);{P’}:~, and iti; (A ‘,{p);{p’}r;) to denote the 
values of the functions Yj defined by Eq. (3.7) at t = 0, and 
their first time derivative calculated at t = t and t = 0, re- 
spectively. Due to Eqs. (3.6) and (3.7) the expansions of the 
vectors (A ‘(pn *. ‘p, ,t) I .onto the set A take the form 

(A ‘(P, -. * p1 ,t) 1 = i ‘I!; (tA ‘;{p}; {ii’}: ) 
j=l 

=6i1swrz6(Pl -Pi 9 X***XS(P, -Pk 9, 

v(A ‘YP,, - ’ ‘PI 9 I& 

(Fz (PJ) IA ‘YP,~ . * *PI 9 > = 0, (3.5) 

where p” are dummy variables that are integrated over. 
The relations (3.5) represent those additional proper- 

ties of the scalar products (3.1) which permit us to construct 
a generalized projection scheme for vectors (B( p,t) I. We 
have to stress here that the variables pn,...?p, above are 
points in the coordinate-momentum space and are not mo- 
menta of any particular particles from the dynamical system 
in question. The correlations (3.5) are generalizations of 
those considered by Mori, ” Akcasu and Duderstadt, l9 and 
P0zhar.l’ 

As was pointed out above, the vectors (A ‘(p, . - *p, ) IEA 
are also collective dynamical variables by their definition, 
belonging to X. We denote their values at t > 0 by 
CA ‘(P, * - * p1 ,t) I. Thus, using Eq. (3.5) permits us to find a 
projection of any vector (A ‘(p, . * *p, ,t) I&? onto the F’-di- 
mensional subspace X,- C Z which is spanned by the vec- 
tors {A’(p,*--p, >l)F = 4 P@ ‘(p,---pl,t91 

P 0 ‘CP,~ * * ‘~1 ,t9 I 

= i i (Ai(p;..p,,t)lA’(Uk...U, 9) 
jci= I 
x (A ‘(ii, .-.ii, ) IA’(V, -Q) -‘(A’(v;.T,)l. 

(3.69 

The operator P defined by (3.6) and satisfying the condition 
P( 1 - P) = 0 is also a linear Hermitian operator, and thus P 
is a projection operator. 

Now we write down the explicit expression for the pro- 
jection !Pj (tA i;{p);{p’}r) of a vector (A ‘(p, * - *pi ,t) Id?? 
on avector (A~(p~;~*p;)\~& 

1371 

x(A’(B;**TI; 91 + ~A”(P,/*~P&[, 
(3.89 

where 

(A ‘7 P, * * ‘~1 ,t> 1 = ( 1 - P9 (-4 ‘(P, * * -PI ,t9 1, (3.99 

and the operator (1 - P) projects a vector 
(A ‘(P, ---pl ,t) I&F onto the subspace ZI CR, where 
X,CT3~,~=2?. 

After differentiating Eq. (3.8) with respect to t and US- 

ing the Liouville equation (3.3) for (A ‘(p, - * *pl,t) 1 one ob- 
tains 

+ (A ‘YP, * * ‘PI A 1, 

and then from Eq. (3.10) at t = 0, 

CJ ‘(P, ---p,)l ==iL(A’(p;*.p,)j 

= j$ ‘i’; (A ‘;{p); 6’): 9 

x((A’(p;***iq9I +~wi(Pn-‘P,9, 
(3.119 

where (A ‘( ) I denotes the total first time derivative of the 
vector (A ‘( ) I. 

Below we use the expressions 
(A ‘i(p,. . . PI >I = VW i,Pn”‘P1)l, (3.12) 

where (K(A ‘,p, . * -p, ) I is the time-independent vector in- 
troduced and discussed by Sachs,” and Mori and Kawa- 
saki,36,18 which is defined uniquely by the time reversal oper- 
ator of Ref. 35. 

We now proceed directly with the generalization of the 
projection operator method of Mori,” Akcasu and Duder- 
stadt, I9 and Pozhar.‘9 By differentiating Eq. (3.7) with re- 
spect to t and taking into account Eqs. (3.9)-(3.12) one can 
prove 
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$‘$(ta i;{~>;{~‘)F9 = 2 i 
bky = 1 

f: ‘k: (A ‘;{p);{ii}‘; 9Y;(tA k;{iilfCV);L9 

X(A7(Ta*.*fil )IA’(pl:...~;))(A’li::...li;‘)lA’(p:,...p; 9) --I + i &(A i;pn...pl )]A [(p;..$;‘, -t)) 
I= 1 

(3.13) 

where Hermitianness of the Liouville operator has been 
used. 

Operating using ( 1 - P) on the Liouville equation for 
(A’(p:**.p;,t)l and using Eqs. (3.89, (3.119, and (3.12) 
one obtains 

$(A “(p:. . *p;‘,t) I 

= (1 - P)iL (A”(p:+*.p;,t)l 

+ $ Y:(tA’;{p”};“{w}~9(K(Ak;w;..wl )I. 
k-1 

(3.14) 

Equation (3.14) is integrated to yield 

(A”(pE*--p;,t)l = 
I 

f&eC~-s”l-P’iL 

0 

Xkil ‘f$(sA k;{~“~$(iV~~9 

X (K(Ak;ti;.%, )I. (3.15) 

We now introduce the notations, 

U(t)mexp[t(l -P)iL], 

(Wt,{&‘l= Wt9 WA ‘;P,, * * +P, 9 I. 

(3.16) 

(3.17) 

I 

Then the solution (3.15) takes the form 

A “(p;.. .p;‘,t) I = 

(3.18) 

The propagator U(t) defined by Eq. (3.16) and the 
“random forces” ( 3.17 9 have the same form as those of Refs. 
18, 19, and 29. 

From Eq. (3.89 written for (A ‘(pl: 0 ..p;,t)l and Fq. 
(3.18) it immediately follows that for the conjugation 
IA ‘(p;: - * *pl’, - t)) of the vector (A ‘(pg. 0 .p;,t) I one ob- 
tains 

IA ‘(pE...p;, -t) = f: IAk(F;~.~, 9) 
k=l 

+ I 0 
-:si IieYk(( -t-s>,Ciq) 

k-1 

xY;T(sA “;{p”~~{i+}~,), (3.19) 

where f- means Hermitian conjugation, and the Hermitian- 
ness of the Liouville operator has been used. 

Substituting Eq. (3.19) into Eq. (3.13 9 one obtains 

x (A ‘(ji: . . .p;) pqp:, . . . ~:))-‘+~~(-lds(K(A’:p~...p,)l5,((--t-s,,{~}~) 
0 

Lk= 1 

xY~~(sAk;C~“)~{w}‘;)(A[(g~...~;‘)I~j(p:,...p; )) -1. (3.20) 

From Eq. (3.7) and Hermitianness of the Liouville operator it follows that 

%W “;Cp”~;“Cw)~) 

= f;f: (A k(w,-*wl ) IA “(va “‘i;~ 9) -‘y;( -sAk;{v};“{i’}f)(A 7(T;...q )[A ‘(p;...p;9j. (3.21) 
my= 1 
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We now introduce definitions of damping functions where (3.179 has given 

qJ fiy w k;CP}rt cvfi 9 @k (h}; > 1 =%(A k*P * * * p, ) I. Then, substituting Eq. 

= - (iK<cP};)~9k( .I t,G}:9) 
(3.21) intoEq. (3.20):t”akingintoaccountEq. (3.59,using 
definitions (3.229, and changing the time variable s to 

X(Ak(~~...~l)lAm(~n..-v,)) -I,- (3.22) (s- t) one can prove that 

-$‘@A:{P~;{P’)~~ = i’i’:(A’;{p};{ii}‘;) ‘$‘;(tAk;{ii}r{p’};f) + =&fi& 
k=l 0 

k,m= 1 

Xq,:~(s,{p}~{i}~9Y~((t--s)A”;{I}~{p’}~). 
The LC transform of Eq. (3.23) with respect to t is 

y;(d ‘dP};{p’}l;) = Y;(A :{p};{p’}y) + $ k$ \it; (A ‘;{p};{iiH)\IIjk(zA k;{&{pr}y) 

(3.23) 

‘5 
k,m= 1 

We have derived a system of l? matrix equations for the LC 
images Yj (~4 ‘,{p}; {p’};l) of projections of vectors 
{A ‘(P,~ *+*pl ,t) I on the vectors (Aj(pk ***p; ) Id, where 
40 :y (SCP}1 Cd79 re p resent the LC images of damping func- 
tions defined by Eq. (3.22). Equations (3.24) are a general- 
ization of Eq. (37) derived by Mori” and Eqs. (2.21) of 
Ref. 29, and the fluctuation-dissipation relations (3.22) 
generalize those of Refs. 18, 19, and 29. The system of inte- 
gral matrix equations (3.24) can be solved after explicit in- 
troduction of the set A. 

We demonstrate the projection scheme above in its first 
order form, and derive the GLE. In the first order FPT 
scheme, instead of the set A we have the unique vector 
(B( p,O) I, as can be easily seen from Eq. (2.15 9, and from 
Eqs. (3.69 and (3.7) one can obtain 

p WP, J9 I 
= (B(p,,t)jB(~9)(B(p’9IB(~29) -‘@(&9l, (3.259 

and 

‘u: (f&P, ,Pz 9 

= (B(Pd9 Iaf9) (mv9 IWP, 9) - ‘. (3.26) 
Taking into account Eq. (3.5) at t = 0, from Eq. (3.26) it 
follows that 

q (B;Pl ,P2 9 = &Pl ‘- P2 91, (3.27) 
where I is the unit matrix. Substituting Eq. (3.27) into Eq. 
(3.249 one obtains an integral matrix equation 

w WkPl ,P2 9 = S(Pl - P2 91 

+ -y (B;P, s>y: w3#,P, 9 

+ $p ;;, (Z,Pl,F)W (ZB;F’,P, 9, (3.28) 

with Q, ::) (z,p, ,p’) defined by its LC-preimage (3.229, 

(3.24) 

I 

~‘ff,(t,P*,P’9’ -@1(P1~Ii31(--,lj”9) 

x @W 9 Imp’) > - ‘. 

The solution of Eq. (3.28) is 

‘ut W;U,P, 9 = A; ‘(P, ,w9&p, - u)S(pl - ~9, 
(3.29) 

where A; ’ (pl ,zju) is the matrix inverse to the matrix 

A)(Pl ,su9 = &Pl - u9I - ‘\t: UCP, $9 
Z 

1 
---p :;, kPl,U9. 

2 
(3.30) 

Then Eq. (3.8) takes the form 

(B(p’,z) I = A, ‘(p,z,p’)S(p - p’) 

X @(P’) I + (B’(P’,z) I, (3.31) 

wherein (B’(p’,t)I is defined by Eq. (3.18) with 
(gl (t,p)l = (F,(p,t)l. Comparing Eq. (3.31) with Eq. 
( 2.15’) one can derive 

0, (PAP’) = z’@ (B;P,P’) + p ;:, (z,P,P’). (3.32) 

The inverse LC transform of Eq. (3.32) with respect to z 
gives 

0, (mp’9 = 2&t9$‘: (B;P,P’~-+ q~ ;:, (t,p,p’9. (3.339 

On the other hand, from Eq. (2.3) one can obtain for the 
case under consideration 

-$wPJ9 = 
I 

I 
dr 0, W - r,$9BW,r9 + F2 W9. 

0 

(3.34) 

Substituting Eq. (3.33) into Eq. (3.34) gives 
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$Qp,f) - \t: (~B;p,ii’)B(ji’,t) 

- 
s 

‘IT:;, (U--),P,P’PW,T). (3.35) 
0 

Thus, we have proved that the master equation (3.35) is 
an exact equation of the first order FPT with respect to ther- 
mal disturbances. Since the above development is general, 
master equations of different FPT orders can be derived in 
the above way for any quantities whose time evolution is 
governed by the Liouville equation. Taking into account the 
differences in notations and in the definition of p ii) (t,p,p’), 
which in the investigation presented above differs in its sign 
from those of Refs. 18 and 19, the master equation (3.35) is 
the GLE of Refs. 18 and 19. For a scalar dynamical variable 
the scheme developed above leads to a generalization of the 
corresponding equation of Ref. 29. The second order FPT 
master equation for a vector dynamical variable can also be 
obtained; in view of its complicated structure we do not de- 
scribe it here. 

There are mathematical questions of separability and 
completeness of the Hilbert space Z?’ introduced at the be- 
ginning of this section which have not been solved here, nor 
in Refs. 18,19, or 29. We leave these questions to mathemati- 
cians, and go on to derive mean field kinetic equations for the 
singlet distribution functions of strongly inhomogeneous 
fluids in Sec. IV. 

IV. KINETIC EQUATIONS FOR STRONGLY 
INHOMOGENEOUS FLUID MIXTURES 

We consider an inhomogeneous fluid mixture of non- 
reactive structureless molecules numbered with Greek in- 
dices a, &.., of species ij, etc., labeled with Latin indices. 
The fluid-fluid particle interactions are assumed to be pair- 
additive, central and decomposable into the sum 

Pr(cg> = pi&&3 + q%(q;% 
where pH is a hard core repulsive contribution, 

(4.1) 

P‘Y(4;p) = i 
+ co, @ < aij, 

o 
9 $5 ug, 

(4.2) 

and q’s (q;@) represents an attractive soft interaction that is 
assumed to be continuous and qGB = q$$’ = $ - qr,qy 
and qf are vector coordinates of the particles a, fi belonging 
to species i, j, respectively. The inhomogeneity of the fluid 
mixture is caused by an external field potential. We consider 
two cases of external field potentials. 

( 1) $(qp) is a continuous potential of a general kind 
with qp = qy@; and (2) a fluid-wall potential of the type 

& (qr) = 4 (42) + 4&u (&X2 (4.3) 
where the hard-core contribution is 

~‘EH(qE? = 
1 

+ a, 42 < aiw 2 

0, qzw > c7,, 
(4.4) 

and Giw (qF$) is the attractive part of the interaction be- 
tween the a-th fluid particle of species i and the w-th particle 

belonging to a structured solid wall consisting of particles of 
species w. The wall restricts the fluid volume, and is impen- 
etrable to fluid particles. We also assume that fluid mixture 
particles cannot react with wall particles, and that the latter 
are structureless, all of the same species, and cannot move 
from their average positions in the walls, qw = qw&,. 

The evolution of a fluid collective dynamical variable 
A[I’(t)], where r(t) = {q?(t), pg(t)](pp=m,vF is the 
momentum of the a-th particle of species i, vg and mi are its 
velocity and mass) is a dynamical state of the fluid system, is 
described by the Liouville equation (3.3) with the solution 

‘4(t) = 
1 

exp(itL+ M(O), t>O, 
exp(itL- M(O), t<O, (4.5) 

which follows from the singularity of the potentials ql (qt@) 
and y”, (qr), which contain hardcore repulsive contribu- 
tions. The Liouville operator iL * is the sum of free particle, 
iL ‘,_ fluid-fluid interaction, iL ** , and fluid-external field 
(case 1 ), iL “, or fluid-wall interaction (case 2)) iL : , oper- 
ators, 

iLO=-=-- z.!!-*$, 
i ,=I& , 

iL ‘+ =~p~,.~~G~ 2 3 1 
wherein 

67% = - &wG~)*($ - $) 
+ Iv;~*~;qo( T v;%gQs(q;~- au> 

x (b$- I), v+f- v:; 

iL E = - 2 2 $$(qp,-& (case 1) 
ia=l qi I 

or 

iL “, = ~a~,u~,IFGwv (case 2) 

wherein 

If-zm= -d&#f) -a, T;w(v;,qy,qw), 
w fM 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Ty”(v:,qp,q,) = ~v~igyO( -+ vyGgf,“> 

XS(q~-Ci~)(b~- l), 
(Tw- a _ aru”aw 

4iw - 4w - Qi - 4iw 9iw * 

In Eqs. (4.9)-(4.11) O(X) denotes the unit step function, 
and bz6are the hard core collision operatorsZ6 for fluid-fluid 
interactions, and 

byvi”=vs* = VP + 2(vpqc)Q-,-, 

where vy,vF* mean the pre- and postcollisional velocities of a 
fluid particle, respectively. 
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A. Generalized Langevin equations for the species 
phase space and singlet dlistribution functions of 
inhomogeneous fluid mixtures 

We consider the collective dynamical variable 

-4(q,p,t) = 2 S(q - q?(t) >S(v - vg(t> > 
n---l 

- ~~(ul-99(t))S(v-vy(t))) ( @=I 
Ni 

= c Ns - qP(t) )6(v - vg(t) > 
a==1 

(4.12) 

which is the deviation from equilibrium of the phase space 
density of species i. The bracket ( ) denotes averaging over 
the grand canonical equilibrium ensemble; here temperature 
is T = l/~& Ni is the number of molecules of species i, 
ni (q) is the equilibrium number density of species i, and 
Qp, (u) is the Maxwell-Boltzmann velocity distribution func- 
tion. The GLE (3.35) in component representation is 

&A, (q,v;t) - ia, (q,v;i$,7,)A, ($,v’q) 

I 
* -t ds z, (q;v;i$,V’;t - @A, (q,V’;s) = 8;” (q,v;t), 

0 
(4.13) 

where for convenience of comparing our results with those of 
Ref. 26 we have introduced For the matrices @: ,cp : :, and the 
vector F, (p,t> the following notations 

(4.14) 

Q, :t, ((t - S),P,P’) = -- Z(q,v;q’,v’;t - S), 
F, W> 4.T + (q,v;t), 

(4.15) 

(4.16) 

so that, corresponding to Eqs.(3.26), (3.22), and (3.25), 

ifi,(q,v;q’,v’) = (CiL + Ai (q,V)}A r(ij”,Y)) 

x (Ak(~“,V)))Ap(q’,v’)) - ’ (4.17) 
is an element of the frequency matrix describing an instanta- 
neous response of the system, * means complex conjugation 
and 

2,mYl’,d) = @l+ hl,v;mi-*w~~“)) 
x (A,(~“,V”)A,+(q’,v’)) -’ (4.18) 

is an element of the dynamic memory matrix describing the 
delayed response. The projection operator (3.25) and the 
random forces 3:;’ defined by (3.17), (4.16) take the same 
form as those of Ref. 26. 

Introducing averaging over the nonequilibrium grand 
canonical ensemble in the same way as that of Ref. 26 one 
can find that the GLEs (4.13) averaged over the nonequilib- 
rium ensemble give the kinetic equations (2.17) of Ref. 26. 

As was discussed in Sacs. II and III, the terms 
3;’ (q,v;t) in the GLEs (4.13) should be considered to be 
terms of the next order of smallness with respect to other 
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terms in Eq. (4.13)) in order to give meaning to the collective 
dynamical variables description of the time evolution of the 
system. Also, the ensemble average of the fluctuating term 
&F tends to zero after many collisions have occurred if the 
initial state of the system is near equilibrium.37 As we have 
seen in Sets. II and III, the GLEs are rigorous equations of 
the first order FPT, and thus we can only use them correctly 
if the state of the dynamical system in question is near to a 
stationary or an equilibrium one. The conclusion of Ref. 37 
that (ST (q,v,t)),, -+O is also consistent (without restric- 
tion on the fluid density) with Bogoliubov’s hypothesis de- 
scribing the kinetic stage of the many-body system time evo- 
lution in terms of singlet distribution functions, as was 
pointed out by Sung and Dahler.26 Thus, (ST (q,v;t) ) na 
can be set equal to zero. The next step in the investigation of 
Eqs. (2.17) of Ref. 26 is to find an appropriate approxima- 
tion for the dynamic response 8,. As in Ref. 26, it seems to 
be logically justified to consider a zeroth order approxima- 
tion 8, = 0 at first. The results derived in Ref. 26 using such 
an approximation when deriving mean-field kinetic equa- 
tions of homogeneous fluids proved this approximation re- 
mains informative and permits one to prove reasonable and 
tractable kinetic equations. Thus, as the first step in investi- 
gating the kinetic state of the inhomogeneous system time 
evolution, we also adopt a zero approximation for 2,. Fol- 
lowing Ref. 26, we consider the coupled set of mean-field 
kinetic equations 

$6Fi (q,V;t) - ist, (q,v;$,V’)SFJ (if,T’;t) = 0 (4.19) 

as the starting point for studying the time evolution of the 
inhomogeneous fluid mixture described by the departure 
from equilibrium, 6Fi, of the nonequilibrium singlet distri- 
bution functions Fi (q,v;t) . [In Eqs. (4.19)) as in most cases 
in this section, we use the standard convention of summing 
on a repeated index. ] 

As we shall see, Eqs. (4.19) can be rewritten in explicit 
form in the case of an inhomogeneous fluid mixture as well, 
and generalize those of Ref. 26. 

6. The explicit form of the mean-field kinetic equation 
for inhomogeneous fluid mixtures 

To write down an explicit form of the kinetic equations 
(4.19) one should calculate the frequency matrix iti, of Eq. 
(4.17) which can be represented in the form 

ifI, (x,x’) = iflz (x,x’) + if$ (x,x’) + iC$(x,x’), 
(4.20) 

where x denotes (q,v) and 

iflb(x,x’) = ({iL’A,(x)}A T(F)) 

x,yf ‘(Z”,x’) r = O,I,E,~ 

and ,y - ’ defined by 

(4.21) 

,&F ‘(x,Y),yo (YJ’) = SjjS(x -x’> (4.22) 

is the inverse of the static correlation matrix with elements 

,yfJ(&x’) = (Ai(x)AT(X’)), (4.23) 

J. Chem. Phys., Vol. 94, No. 2,15 January 1991 Downloaded 02 Oct 2005 to 141.217.4.72. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1376 L. A. Pozhar and K. E. Gubbins: Dense inhomogeneous fluids 

where S(x - x’) = S(q - q’)&(v - v’) is the product of the 
Dirac S functions. 

After simple calculations (see Appendix A) one can ob- 
tain 

X#(X,X’> = S,S(x -x’)ni(q)@i(v) 
+ nj(q)~j(q’)~i(“>~j(v’)hiio, (4.24) 

wherein 

h,(q,q’) =gg(wl’) - 1, (4.25) 

and the pair correlation functiong,j (q,q’) of the inhomogen- 
eous fluid mixture specific to the two species i andj is defined 
according to van Hove,” 

~i(q)~jh’k,/hw-l’) 

= S(cl- spmcr - $1 * (4.26) 

Then from Eqs. (4.22) and (4.24) it follows that 

,?(fl ‘(x,x’) = Soa3(x -x’) 

X[nj(q')cpj.Cu')] -1-ci/(S9S')2 

where the functions 

Cii (q,q’> =- 
I 

dq” dv” ,yii ’ (q,v;q”,v”) 

xn,(cl”)~k(Ul)hk,(q”,q’) 

(4.21) 

(4.28) 

satisfy the Ornstein-Zernike relations, 

Cu(q,q’) + da” ci~(q,q”)n,(q”)h,,-(q”,q’) =hq(q,q’), 

(4.29) 

and have all the other properties of the direct correlation 
functions (see Appendix B) . Thus, they are the direct corre- 
lation functions for the inhomogeneous fluid mixture. 

Using Eqs. (4.27), (4.29), from (4.21). at r=O, after 
some calculations (see Appendix C) , one can derive 

iao,(x,x’) =6,1dq1~(~(q-q1)] 

xS(q’ - q’)6(v - v’). (4.30) 

Thus, it follows from Eq. (4.30) that 

dx’ ifi; (x,x’)Q (x’;t) 

= d9’$ f$(q - 9’) s 1 SFi(q’yv;f) _ L I 
= - va., (s,vA, 

aa 
(4.31) 

where we have used the S-function derivative property (C5) 
of Appendix C. 

The most complicated calculations are connected with 
deriving an explicit expression for the fluid-fluid interaction 
contribution X$(&x’) to the frequency matrix. They are 
discussed in Appendix D where a method analogous to that 
of Ref. 26 has been used. In Appendix E we calculate the 
external field contribution S$(x,x’) to the’frequency ma- 
trix. Thus, summing up the expressions (D i4) and (E2) of 
Appendices D and E, respectively, in case 1 (an external 
field potential of a general kind $) one can derive 

ifl;(x,x’) + ii-$(x,x’) = iTu$2q1 dq’dv’ dv*{I;fS(v - v’)}S(v’ -v’)S(q’ - q’)S(q - q’) 
1 

Xnl (q2)@>r (u2)gi1 (q’,$) + 
s 

dq’ da2 dv’ dv2 

X-&%(v - v’))S(v2 - v’)S(q - q’)s($ - q2) 

xni(q1)@i(v1)gii(q1,q2) + 6, 
s 

dq’ dv’{I”%(v - v’))S(q - q’)S(q’ - q’)&v’ -v’) 

+ ni(q)@i(v)v 1 
ac, (S>S’> 

aq 
+&j (WY) 

JY, (wl’) 
aq I + 

ani (9) 
-----@‘i(u)v 

aa [ 
1 + C&q’) 

-7.l dq3 121 (a3& (q3,q’) I , 
where we have taken into account that 

a*i~(q7q2) 
TSdq2 aq nl (S2)gil (%q2> + - 

a+(q) = o 
aq 

2 

(4.32) 

(4.33) 

as the resulting force acting on a particle of species i at point q in equilibrium is zero. The quantity lcil (q,q’) is delined in 
Appendix D. 

An analogous expression in case 2 [external field potential eW defined by (4.3) ] can be proved by summing up the 
expressions (D 15) and (E4) of Appendices D and E, respectively. 
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Wf,(x,x’) + ii-$(x,x’) = Gycf dq’ dq” dv’ dv*(Ij;S(v - v’))S(v’ - v’)S(q - q’)S(q’ -9’) .’ 
I 

:xnl(q2)~‘I(U2)gil(q’,q2) + 
s 

dq’ dq’dv’ dv’{I;&v - v’))S(vz - v’M(q - q’)S($ - q’) 
. . 

xni(q’)~,(u’)g,(q’,q2) + 6, 
s 

dq’ dq2dv’{If’“S(v i- v’)) 

XS(V’-V’)}6(q-qq’)S(q’ -q’>n~(tiz)gj~(q’,q2) + nj(q)@i(“)v 

x ac, (9d) 
i 84 

+Pg,(q,q’) aqg;rq’)] -’ 

where we have also made use of multipliers 

dq’ nk (S2)gik (S,q2) 
dyik (4d) 

s 

av: (d) 

aq 
+ dq2 

aq 
nw (q2>gj~ CiS”> = O7 

(4.34) 

(4.35) 

which represent the resulting force acting on a fluid particle of species i at point q in equilibrium in case 2. The quantities 
V&, (q,q’) and n, (q) are defined in Appendices D and E. 

Substituting Eqs. (4.3 1) and (4.32) in Eq. (4.19) one can derive in case 1 of a general external potential 6, 

(2 + v-&)84 (q,v;d = c( J- da’ d~2dv’dv2{I~S(v~V1)}S(~~~1~n~(~2~~~~~2~ 
j ,_ -. 

Xg,(q’,q2)S~~(q.‘,v’;t) + dq’ dq2 dv’ dv’{I~S(v - v’)}J(q - q’) 

Xn,(q1)~;(U’)g~(q’,q2)~~(q2,V2;t) + n;(h)Q;(v>v s 
dq’ 

+ P& tsd) @i(u)v 

- dp”,n,ts”)C,(4”,s’)]~~F,o) + j- dq’ dv*{lf%(v - v’)}S(q - q’)W.(q’,v’;t). -1 (4 36) 
..i. 

So far we have not used any properties of the fluid-fluid interaction potential except its pairwise nature together with Eq. 
(4.1), where we have considered qs to be of a general form”p,(qy,qf). We now make use .-of the fact that 
cps(qF,qf) =,,((qp--q$).ThenfromEq. (4.36),defmitions (4.38);and (4.39), (4.31), (4.32), (4.19),.(4.33),and (C6) 
of Appendix C, one can derive in case 1 of the external potential 4 

+ n;(q;)~;(Uj)g,i(qi,Sj)SFi(qj,Vj;f)). .' "' ,:i,~~ 

+ n;(q;)@;(u,)v; dqj 
J- ( 

Xv(qi,qj) ~:~ af ;hii) 
asi 

-giy(q19sj, ., 
aqii 

*=I- ~~i(ui)v~~d~j[l+C~tcc,-~~d~, 1 ni(Ql)C~(dliQj) ,i., : 1 SFjCqjSvj;f> __’ [ I - 2 (4.37) 
I 

where the quantity 
.: L .‘ 

f~(q~) =exp[ -Pp~(qg] -1=@(q,L66) - 1, qv=IQ1 -qjj, ‘.l (4.38) 

is the Mayer function specific to the hard-core fluid-fluid interaction, and we have used the operators _ : 

+dWij) .- 
I, = aq, l +Tg,, 

: 
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=d 
s 

d&jv,*&j@( - v,*S){8(qi - qj + aiJ6) -S(qf - qJ - (Tiia)), 

vu = vj - vi, b, = b$O with a = i,fi = j, 

(4.40) . 

and where we have also changed notations (q,v) and (q’,v’) on ( qi,vi ) and ( qj,v, ), respectively. 
Using the same procedure which has lead to Eq. (4.37), from Eqs. (4.3 1 ), (4.34), and (4.19) we can prove in case 2 

(external potential & ), 

1 $+via-- 
s da, 

af z bw I 
asi Pm; hi 

Izw (%a )giw (%?Qw I$ 

‘I 

sFj (%Pv,$) 

= 

cls 
&j dv/ T~Cnj<qJ)~J)/cUJ)gi/(q;,qJ)~I;):(q],VI;~) + n,(qi)~i(ui)g~(qi,Pj)~~(~,Vj;~)) 

J 

+n;(q;)Q>itui)V, &j 
s ( 

acg (%&J > af;w 
ai 

-g~(sliSSj) 
> 

sq (qj,Fjlt> 

+*j(“i)v]fd41[1 + CuCSi,q) -TSdq n 

I 

I a~q,)c~(ql,qJ),sr,(qJ,~J;~)] 

+ T?‘(Vi>qi,q, In, (Qw )gim tQi,qw )Sl;;tq;,Vi;t), (4.41) 

where we have also denoted (q,v) , (q’,v’ ) , ( q3,d ) , ( q2,v2) by 
(q;,Vi), (qJ,vJ),ta,v;), and (qwtvw), respectively, and Ti” 
is Ty”’ from Eq. (4.11) at a = i. We note here that, in princi- 
ple, Eq. (4.41) can be obtained from Eq. (4.37) directly by 
using the time smoothing procedure introduced by Kark- 
heck and Ste11,39 

Equations (4.37) can be reduced to Eq. (2.31) of Ref. 
26 for a homogeneous fluid mixture, assuming 
ni (q, ), nJ ( qj ) are equal to constants. Similarly to Eq. 
(2.31), Eq. (4.37) and (4.41) do not contain explicitly the 
soft fluid-fluid and fluid-wall interaction potentials, so the 
effect of the soft interactions are confined to their contribu- 
tions to the equilibrium correlation functions. Thus, Eqs. 
(4.37) and (4.41) can be regarded as extensions of Eqs. 
(2.31) of Ref. 26 for homogeneous fluid mixtures to inho- 
mogeneous ones, where the external potentials can be of a 
general kind #or a pairwise kind 4;. Moreover, Eq. ( 2.3 1) 
of Ref. 26 were proved to be a near-equilibrium linearized 
homogeneous generalization (without restrictions on fluid 
number densities) of the BBGKY equations for fluid mix- 
tures with hard-core fluid-fluid interactions to interaction 
potentials containing soft parts. Thus, Eqs. (4.37) and 
(4.41) should be treated as near-equilibrium linearized in- 
homogeneous generalizations (without restrictions on fluid 
number densities) of the BBGKY equations. The linearity 
of the generalizations above follows from the liner nature of 
the GLEs, as was shown in Sec. III. 

The absence in Eq. (4.37) and (4.41) of terms explicitly 
containing soft fluid-fluid or fluid-wall interactions has im- 
portant consequences. To see this we note that instead of the 
definitions (4.12) for the collective dynamical v_ariables one 
could introduce collective dynamical variables A, (qj,v,,t), 

I 

- (4.42) 

Y 
= 2 S(q - qY(t))S(v - v?(t)) 

a=1 

where ( ) _ means “near-to-point-q-space-smoothed” aver- 
aging over the equilibrium grand canonical ensemble, and 

ii* (Si 1 ’ * ‘fik (qk )kj...k (qj9***,qk ) 

= Ce’*CS(qj -qP(t))eekCitqk -ql(t)) (4.43) 
a+.-.fY 

defines the “smoothed” equilibrium specific van Hove corre- 
lation functions & . k ( qi ,..., q, ). The quantities (4.17), 
(4.18)) and the projection operator should also be redefined 
so that they be expressed through the average ( > _ instead 
of ( ). The sense of space “smoothing” above is to introduce 
ii,(&) sothata&.(qi)/aqj~Z&(qj,vi;t). IfwerequireBqs. 
(4.33) and (4.35) to hold for “smoothed” fiik(qk), 
gik (qi,qk ), then~ Eqs. (4.37) for an inhomogeneous fluid 
mixture in a general external potential + take the sameform 
as Bq. (2.31) of Ref. 26 for a homogeneous fluid, 
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dS/ dvj T~,C~j(qj)~j(uj)s,(q,,qj)GFi(qi,Vi;t) 

+ lii(q,)<Pi(u;)gii(qi,qj)SFj(qj,vj;t) + fii(qi)*i(ui)Vl 

x 

s [ 

dq. aZ*,(Qidlj) 
J 

hi 
-2ij(%>qj) af;z) ]sF,(qj,vj;t)), 

and analogous equations (4..41) for an inhomogeneous fluid mixture in an external field & can be written as 

1 
&+v, -c-- 

I 4, 
af z (4iw 1 

hi Pm asi, 
ir,o~i,(e,qul~~ 

I 
a& (qi,Vi;t) 

I 

= 
dS 

dqj dvj T,C~,ii,qj)~j(u/)g,i(qi,qj)S~(qi,vi;t) + zIi(qi)~i(ui)~i,(qiqj)SF,(qj,vj;t)} 
i 

xfii,(q,)<pi(vi)vi’ dqj acu(qiyqJ 
s [ 8% 

-iii/ (%YSj 1 af;gq%yqj,v,;*)) 

+ 
s 

&m T:“‘(Vi,qi,qw >fiw (qw >gim (Qi,Qj 164 (qi,Vi;t), 

1379 

(4.44) 

(4.45) 

where ii, ( qw ) is a smoothed surface number density for the 
wall molecules. 

Equations (444) and (4.45) can also be derived direct- 
ly from (4.37) and (4.41), respectively, by assuming fi, ( qj ), 
instead of ni (% ), and taking into account that all other equi- 
librium quantities there that are functionals40*41 of nj ( qj ) 
should be changed to ones corresponding to ?il (qj ). 

V. CONCLUSIONS 
In the investigation presented above we have developed 

a rigorous functional perturbation theory (FTP) scheme by 
means of the generalized Mori projection operator tech- 
nique. This permits us, in principle, to derive the master 
equation for any order of FPT describing the evolution of 
collective dynamical variables of a many-body system. In 
particular, we have proved that the generalized Langevin 
equation is an exact equation of the first order FPT above. 
The master equations for the higher orders FPT can also be 
derived and should be useful for the description of the time 
behavior of dynamical systems with strong memory effects. 
We have also used the GLE to derive kinetic equations for 
strongly inhomogeneous fluid mixtures under the assump- 
tion that the dynamic memory matrix in the GLE is equal to 
zero. The kinetic equations for inhomogeneous fluids with 
first order dynamic memory effects can be derived from the 
GLE with appropriate approximations for the dynamic 
memory matrix. We have considered two cases each of 
which includes an external time-independent potential field 
of a general kind and pairwise fluid particle-wall particle 
interactions. Such equations have been proved to be a natu- 
ral generalization of those derived by Sung and DahlerZ6 for 
homogeneous fluid mixtures. We have been able to establish 
that these equations can be rewritten in the same form as 
those for homogeneous fluid mixtures,*‘j by introducing a 
space-smoothing procedure for equilibrium structure fac- 
tors (number densities, pair and direct correlation func- 
tions) . 

Unfortunately, from a general point of view, one cannot 
introduce a unique procedure for “smoothing.” Such a pro- 
cedure should be developed additionally for any particular 
system under consideration. The “smoothing” procedure 
for simple equilibrium fluids confined in narrow capillary 
pores has been widely discussed (see, e.g., Ref. 42), how- 
ever, and seems to be established. 

As follows from Eqs. (4.44) and (4.45), nonequilibri- 
urn singlet distribution functions Fj (q,,v,,t) for inhomogen- 
eous fluid mixtures should be expected to be functions of 
“smoothed” equilibrium local number densities fij ( qj ) . As a 
result, local transport coefficients of strongly inhomogen- 
eous fluids near to equilibrium can be expressed as functions 
of fij ( qj ) . Thus, we have provided a rigorous foundation for 
the heuristic idea proposed by Davis et al.” for simple fluids 
confined in narrow capillary pores, namely, that local trans- 
port coefficients of inhomogeneous fluids in narrow capil- 
lary pores can be set equal to the transport coefficients of 
homogeneous fluids at the “smoothed” local densities. We 
have also extended this idea to the whole class of strongly 
inhomogeneous tluid mixtures. 

In a future paper we shall consider a velocity moment 
method to derive from Eqs. (4.37), (4.41) and (4.44), 
(4.45) hydrodynamic equations,and explicit expressions for 
the transport coefficients of strongly inhomogeneous fluids 
near to equilibrium. 
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APPENDIX A: CALCULATION OF THE STATIC 
CORRELATION MATRIX 

Noticing that 
&NJ 

(~x&%q - qp)s(q’ - qy)s(v - vr”)S(v’ - vf)) 

= S&x - x’)n,(q)@i(v) 

-!- n;(q)nj(q')~i(v)Q>i(v')g,(q,ql), 

one can obtain the expression (4.24) of the text from Eqs. 
(4.12) and (4.23). 

APPENDIX 6: SOME PROPERTIES OF THE MATRIX x 
AND FUNCTIONS C,(q,q’) 

By definition Eq. (4.23 ) in classical statistic mechanics 
one can derive 

.yjj(x,x’) =Xji Cx’sx> (Bl) 
so xi/(x,x’) are symmetric functions of the simultaneous 
permutation of index sets (i;x) and (i;x’). The same proper- 
ty applies to the pair correlation functions (4.26), then from 
E?qs. (4.22) and (Bl ) it follows that 

,yjL ’ CxjYxk 1 = ,lJG ’ Cxk jxj 12 032) 
so that from Eqs. (4.27) and (B2) one can derive 

C,(q,q’) =s&i(x-x’){‘[n,(q’>@j((v’)] -l - 

- [ni(Q>@i(U)]-ll+ cji(q',q)* (B3) 
Thus, from Eq. (B3) it follows that CU (q;q’) ,=’ C, (q’,q). 

APPENDIX c: CALCULATION OF i$‘~x,x’) 
We first calculate the average 

(CiL”Ai(X)lAk (X”)) 

= 

=I1 +4, 

where 

XS(q’ - q”)S(v’ - v”)n,(q’)<P,(v’) 

+ dq’dv’ 
J L 

c-f/(, - 4’) 

Xnk (qn)@k (u”)gik (q’tq”) 

and 
(C2) 

,. 

12 = - 
A. 

=- 

(C3) 

Then from Eqs. (4.2 1) and (4.27) at r = 0 one can obtain 

. 

ifii(x,x’) =Sii 
J 1 

dq'-& -$i(q--q'.) 
I 

&ql - q')L?(v-VI) - dql-.!!.- J I d&q-d) I mi ad 1 i : Xn,(Q’)<Pi(U)Cii(q’;q’) + dq*P S(q-q*) J I mi aq’ 1 ni(q’)+i(u)g~(q’,q’) 
.,_. 

-&+W&~(-$S ‘) (q-q') ni(q')~i(U)nk(Q'i)gik(ql,q")Ckj(qUtq') 

7 pq’$-[$iq - ql)}n,(qi)Qi(u) + C sdq” dq’$-(-$(a - q’))n,(q’) 
I I j- _. 

x.Q>i(u>nk(q”)~k(u”)..“ 
The expression (4.30) follows from Eq. (C4) after using the &function derivative property 

Jo A (T)V2cT)S((T-a))= Jm d~Cfi(r)f2(~)}8(7-a) .*: 

: (C4) 

-9” -m 

.= - [A (T)f2(T)]Ln = -f;(a).A(a) -fi(a)f;(a), (C5) 
together with the symmetry properties (Appendix B) of the functions gi/ (q,q') ,c,, (q,q') and the 02 equation (4.29). 

APPENDIX D: CALCULATION OF ifi$&x’) 
Corresponding to Eqs. (4.7), (4.17), and (4.21) one can write 

iC$Cx,x’>~= ({iL: A,(x)}A z(X”))xli- *(T$), :_ (01) 
where 

J. Chem. Phys., Vol. 94, No. 2,15 January 1991 

Downloaded 02 Oct 2005 to 141.217.4.72. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



L. A. Pokhar and K. E. Gubbins: Dense inhomogeneous fluids 1381 

G4W =+-EC {I~~+,~IIIP+rp”l]ai(x) 
.‘ 

-#P 

= cc ~;TB[el- sPV(v - VP> - n,(q)@Ju)] + +=J~I;fi[s(q - qp, 

f-v@ ( i#j ’ 

Xs(v-V~) -ni(q)cgiCu)] +$Cc'~~["(q-q~)6(V-V~) -ni(q)#i(.V)] 9 (D2) 
'>#I 1 ! 

where the Latin subscripts and Greek superscripts correspond to species and particle labels, respectively. Since the second and 
third terms in Eq. (D2) give the same contributions, Eq. (D2) can be written in the form 

it?$(x,x’) = i ~~~‘(x,x”).;111/‘(X”,x’) 

2 r 

(D3) 
p=l 

with 

yiI”(x,x’) = 6i[TJ dq’ dv’ dq’dv*-&%(v - v’)}S(v’ - v’)S(q - q’) 

XS(Q'~~~')ni(~')nj(~2)<Pi(u1)Ql,(u2)~~(~1~~2)~ 

22y (x,x’) = -pj,J dq’dv1~dq2dv2-&%(v- v’)}cY(v’-v*)S(qr-q!) -c 
1 

X6(~‘~~2)ni(91)n~(q2)~i(u1)Q?i(~2)g~(q1~q2)~ .-’ .-. .- 

A?‘;;‘(x,x’) = xfdql dv’ dq* dv’ dq3 dv3{I;&v - v’)}&v’ - v3) 
i 

~S~Q~~‘~S~~‘~~3~ni~~1~nj~~2~n~~~3~<Pi~u1~~j~CV2~~~~u3~~,i,~~’~~2~~3~~ 

L?;f’(x,x’) = - ‘+&(q’)$(zf) dq’ dv’ dq* dv*{If6(v - v’)) 
J s 

.-i L 

(D4) 

r. 

(D5) 

(D6) 

XS(q--q’)ni(cl’)nj(q2)~i(U1)~j(U2)g~(q1,q2j. (D7) 
We can now compute the products y$“xj- ‘using the formula (4.27) forx; 1 and the formula (Cl4) ofKef. 25 which in our 
case takes the form 

CD81 

with 

yII(9*,92) =~.S(q’,S*) -P -‘@(IS’ -q*l -flil>, ._ (D9) 

where the notations ‘I’, (q’,q*) and ps (q’,q’> stress the fact that we have not used so far any properties of the soft interaction 
potentials except their pairwise nature. 

Further on, using the formula (D8) one can compute the product ~~j~‘(x,Z”)x,; ‘(3’;~‘). The third of these products 
can be written in the form 

1 JQiCu> 
2y’(X,X”),y~ ‘(EB,x’) = - - ni (q) 

mi 6% 

x #hf’ dqL 
a*, (q,q2> 

& 
nj (q*>gfjr (Wl*d > [ Sk6(q”‘- 9’) - n, (tf >C,k (q”,q’) 1, @IO) 

; 
where the expression (D8) has also-been used. The last of the products, Eq. (D7), can be transformed to the form 

.5?y(X,l”)X~ l(F,x’) = E. 1 a@iCu) 
- -ni (q) 

j-mi 6% s 
dq2 

ay, (q,q*) 
aq 

n, (q’& Cm*) 

. . . 

j,I 

.a: 
dq” dq2nI(q”)nj(q2) av, cqdi 

aq g&ld12)G (qfl,9’). CD111 

The expression (DlO) can be transformed using the second equilibrium BBGKY relationship for inhomogeneous 
fluids4’ We consider two cases of external field potentials discussed at the beginning of Sec. IV. Thus, in case 1 for the external 
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potential $(qp) of a general kind the corresponding BBGKY relationship takes the form 

84, (q,q*) 
zbq2 aq ni (‘115 (c1*ki~(4JlRA2) 

i 

- p - ‘g, (q,q” +T!$!c - nt(q)&(qd’) ayi’itq”’ - ni(q)gg(q,q”)T. (D12) 

The notation $(q> emphasizes the fact that we have not used any special properties of $. In case 2 of the external potential 
eW (4°C) the result from the second BBGKY relationship can be written as 

ay, (q,q*) 
Tbq2 aq nf (dnj (sl*krj (Wl”Al*) 

-p - lgi, (q,q” )%&!!I 
- ni(cl)Sir (Q9Q” 1 

ay, (qd ) 
aq 

- dq’ s avz b-d) 
aq 

n,(q)n, (s23)giku (Qdd), PI31 

where 

[with notations VE ( q,q3 ) we indicate that we do not need any other properties of the soft external potentials except their 
pairwise nature], n, (q3) is the surface number density of the wall particles and giJu ( q,q”,q3) represents the three-particle 
correlation function specific to id-fluid particle and w-wall particle correlations. 

Thus, the expression (D 1) calculated for a general potential q(q) takes the form 

ifii(x,x’) = SUE dq’ dq2 dv’ dv*{I;$(v - v’)}S(v’ - v’)S(q - ql)S(ql - q’) 
I J 

Xn,(q2)~l(u2>gir(q’,qZ) +P@j(u>ni(q)v dq2 ayil (s,s2> 
aq 

n,(q2)& (WI*) 

XC,(q,q’) + 
s 

dq’ dq2dv’dv2CIfS(v - v’))S(v”- v’)S(q - q’)S(q*- q’)n,(q’>@i(u’) 

Xg(j (q’,q2) + @j t”)V 
ac, ha 

4 (9) + &Ccl)& (WI’) 
w, (4,47 w(q) 

aq aq 
+ Pni (q)gy(Wf)- 

aq 

+ an, cd 
a,-[ l + Cv(Wl’) - ~Sds”n,(q”)C,(q”,q’)] -@zi(q)~~Jdq~ gi,(q,qu) I 

Xnl(q”)Co(q”,q’) t-&(s) 7.f 
dq2aYyil~~q2) 

n, (S*)& (WI21 

--kJni(q)~J 4” dq* nl (9” Ink (q*)gik (q,q2)Cu (qV,q’> 
a*i.k (s,s’> 1 aq . 

(D14) 

For the pair-additive external potential flW (q’;q*) an analogous expression can be found, 

ifit =iflt<x,x') IcD,4;3j +ai(~)v 
L 

ac, (qd) 

aq 
ni (9) 

x C, (d’d) dq3 avt b-id) ayi, (s,q*) 
aq n, (q3)giwI (WI341 + Pni (9) dq’ aq 

Xn,(q2)&(W12) -b%(q) ds” fik (<1*)&k (w2> 
I 

, 

where ‘a$ (x,x’) I cD143j denotes the sum of the first three terms in (D 14). 

(D15) : 
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As is obvious from the above, the expressions derived we obtain 
for isZi (x,x’) are also valid for general fluid-fluid and fluid- 
wall pairwise interaction potentials, after replacing Vg and iLE=C$ly, 
Y, by the corresponding continuous potentials. ia=l 

so that 

APPENDIX E: CALCULATION OF /f2; 
1. /L$ for the potential of a general kind 

Denoting by 

iL E.r (x) = z: I~{S(q - qg)S(v - VP)}. 
i 4 

Then for 

Pi/(X,X”) = (CiL 54,(x)}A fp>) 

one can obtain 

pi/(x,xu) = 
( 

xx CI~~(<l-qp)S(V-Vp)}S(q~ -qr)S(V” -VT) 

GY i 

- g{Iy&q - qp)S(v - ~7)) 
( 

n,(qm)<Pl(u”). 

Then from Eqs. (4.2 1) , (4.27 ) , and (El ) after simple calculations one can derive 

(El) 

X$(x,x’) = 6, 
s 

dq’ dv’{l~‘~(v - v’)}S(q - ql)S(q’ - q’)S(v’ - v’) +@zi(q)ai(v)v 

x a#w -Ctj(Q>Q’) -ygv(,,q’) +~~jdg’n/(q’)g,(q,q*)C,(q*,q~) aq I 
+ a+ha de(q) ---~ 

aq. aq ds’ nr(q2)Cu(q2,q’) 1 , 
J 

032) 

where we have also made use of the expression (D9). 

2. /L?$ for pairwise fluid particle-wall particle 
interactions 

In this case [see Eqs. (4.10) and (4.11)] we have 

iL’i, A,(x) = ~Qp’““{s(v - vp>s(q - qg> 
alu 

~ ni(q>@i(u>l, 
so that 

P,(X,X”)~(~iL~+Ai(X)}A,(X”)) 

I 

I 
and 

ii-$(x,x’) = Pi[ (x,X”);yl/ ‘(F,x’). 

Then using Eq. (4.27) and the expression 

dv’{If%(v - v’)}<p,(u’) 

1 a*i(u) avi3q,q,) =-- 
t?li 6% aq 

we can derive 

(E3) 

iQt(x,x’) = 6, 
s 

dv’ dq’ dq2{IFlW6(v - v’))S(q - q’)S(v’ - v’)6(q’ - q’)n,(q2)gi,(q1,q2) 

+ 6% (uhf (0 
If 

dq* 
act (q,q*) 

s 
avk (q,q*) 

aq 
n,(q2)giw(q,q2)Cij(q,q’) - &* 

aq 

X% (q*)&j (q1q2d) + EJ dq3 dq’ 
av: (cr,$) 

aq n,(q2)n,(q3)giw,(q,C1*,q3)CI/(q3,q’) 
1 

+ dq”-- 
s 

avz (d) 

s 

avfi ha 

aq 
n, (s2k, (s,s2> - ds” 

aq 
. (E4) 
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We have introduced above the two- and three-particle 
correlation functions g, (q’,q’) and gin/ ( q’,q2,q3) [or 
gvw ( q1,q3,q2) 1, respectively, specific to correlations between 
fluid particles ij and a wall particle w, and defined by3’ 

-i 

nj(q’)nw (q2)giw (S19S2) = 
( 

z$S(q’ - @>S(q2 - SW> 3 
au, I 

ni(s’)n,ts2)ni(q3)g,,(q’,q2,q3) 
W’j% 

= ~~-p(s’ - smq2 - qw )S(q3 - $) . 
a#P w 

When calculating itit and illi for case 2 (external field po- 
tential #w ), we have taken into consideration the wall parti- 
cles. Thus, the average ( ) in this case includes averaging 
over the wall particles. 
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