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Structure and dynamics of nanofluids: Theory and simulations to calculate viscosity
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The simplified expression of the Pozhar-Gubbiif¥3) rigorous, nonequilibrium statistical mechanical
theory of dense, strongly inhomogeneous fluids is used to calculate the viscosity of model fluids confined in a
slit pore of several molecular diameters in width in terms ofahailibrium structure factorgi.e., the number
density and pair correlation functionsf these nanofluids obtained by means of the equilibrium molecular
dynamic simulations. These results are compared to those obtained by means of the nonequilibrium molecular
dynamic simulations of the planar Poiseuille flow of the model nanofluids, and to the results supplied by
several heuristic expressions for the nanofluid viscosity. This comparison proves that the PG transport theory
provides a reliable, quantitatively accurate description of the viscosity coefficients of the model nanofluids
while all the heauristic approaches fail. This success of the PG prediction of the nanofluid viscosity is because
the theoretical expression accounts accurately for the nanofluid structure.

PACS numbsg(s): 66.10.Cb, 02.10.Jf, 05.20y, 05.60—k

I. INTRODUCTION ometry and depend upon flow types. These spatially depen-

L . . dent coefficients are further averaged to obtain the corre-
The nonequilibrium properties of strongly inhomoge-

. : ' sponding effective, scalar transport coefficients.
neous fluids, such as those on interfaces and confined i - . o
. . . Though Davis’s theory has been in a good qualitative
narrow capillary pores of several molecular diameters in

width (or nanoporesshow a rich variety of behavior, includ- agreement with known experimental and NEMD data, it suf-

. A . . . fers from several major shortcomings. In particular, the
ing enhanced or inhibited viscosity, thermal conductivity an heory does not describe nanofluids on interfaces and in con-

dlfoSIOI’.l rates, modified ph_ase transitions, h'ghly,selecu_\"?inements of other than simple slit or cylindrical geometry.
adsorption, etc. Understanding of these properties is very imrq gerived expressions for the transport coefficients are not
portant both for fundamental and applied research as almoﬁbneral, and therefore, cannot be applied to any nanofluids
any natural or industrial process involves transport phenomgther than those considered in the case studies. Finally,
ena in nanofluids. Examples include adsorption, catalysispavis's transport coefficients do not include contributions
separation, lubrication, drying, wetting, living cells metabo- caused by the interactions between fluid molecules and those
lism, flows in disordered media and many other processesf the confinement. These shortcomings of the Davis theory
Progress in nanomaterials and device development concefead to large uncertainities in evaluation of the transport co-
trates on the use of atomic and molecular clusters, i.e., nanefficients of nanofluids. In the following sections of this pa-
fluids on interfaces and quantum nanofluids in atomic trapsper we demonstrate numerically that the details of the actual
that will shape the future technologies, in spite of difficultiesfluid-fluid and fluid-surface correlations make a great impact
experienced by experimental studies of such systems an the local and average nanofluid viscosity even in the case
present. of very simple, model nanofluids.

Elaborate engineeringl] and experimental studies of  Over the last decade Pozhar and Gublip&) have de-
nanofluids confined in nanopores started in the beginning ofeloped a rigorous statistical mechanical approf&hto
the 60s with pioneering works by Myseds al.[2] and Der-  nonequilibrium phenomena in strongly inhomogeneous flu-
jaguin et al. [3] Accumulating experimental evidendd] ids that remains tractable, overcomes all the shortcomings of
triggered further molecular simulations and heuristic theoretthe Davis theory, and does not involve any assumptions
ical studies of the transport properties of nanofluifis]. about the density and structure of the fluids or geometry and
This resulted in the first microscopic theory of nonequilib- structure of the confinements/interfaces. It relies on the rig-
rium phenomena in inhomogeneous fluids suggested bgrous generalizatiof®] of the Mori-Zwanzig projection op-
Davis[7] at the end of the 1980s. Davis’s approach relies orerator techniquor the functional perturbation theotfFTP)]
the Enskog-like kinetic equation for the dense hard spherdeveloped in the framework of the theory of dynamical sys-
fluid modified by incorporation of long-range attractive in- tems. This new perturbation theory concerns derivation of
teractions in a mean-field sense, and the assumption that tilee generalized Langevin equatiofGLES) to the desirable
nonequilibrium state of the inhomogeneous fluid is locallyorder of FPT(the nth order GLE has been derivedThe
equilibrium. The pair correlation function of the inhomoge- order of a particular GLE depends upon an application. Such
neous fluid is assumed to be that of the corresponding homdsLEs can be further used to derive kinetic and transport
geneous fluid at some local set of the fluid densities as apgheories of systems of interest. This program has been real-
proximated by the Fischer-Methfessel functional of theized for the most general case of strongly inhomogeneous
density distribution. The Davis expressions for the transporfluids and has led to the corresponding generalized kinetic
coefficients cover several particular cases of simple pore geand quasihydrodynamic theories of strongly inhomogeneous
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fluids. The derived explicit expressions for the generalizedof a hardcore repulsive contributiapy(rj;),
nonlocal transport coefficients reveal extreme sensitivity of

these coefficients to the structure factors of the fluids in the too, Ij<o,
i - initi i Pu(rij)= 2.2
confinements and interfaces. The initial evaluation of the ij 0, =0,
PG-theoretical viscosity has proved that it agrees within 5%
with the NEMD-based datfL0]. and an attractive, continuous soft interactigny(r;;), where

Recent technical improvements in the NEMD-r;=r;—r;, andr;, r; denote coordinate vectors assigned to
computation technique led to reevaluation of some knowrthe centers of interacting moleculeandj, respectively. The
data[11] on the velocity profile of the Poiseuille flow of only requirement to the soft intermolecular interaction poten-
nanofluids in narrow capillary pores of less than 10 molecutial is that it should converge to zero faster thahli;lJF when
lar diameterso in width. This revealed failure of known |r;|—o(| | denotes the absolute value Gf). The decom-
heuristic and MD simulation-based expressions for viscosiposition(2.1) of the actual intermolecular interaction can al-
ties[11] and algorithms for such calculatiof$2] inherent  ways be realized by means of the Barker-Hender@&i)
from the methods developed for homogeneous or weakly13] or Weeks-Chandler-AnderséWCA) [14] methods that
inhomogeneous fluids. It has also become completely obvisupply the corresponding effective diameters of the hardcore
ous that the NEMD simulations technique by itself is notintermolecular interactions g, and oyca, respectively. In
capable of supplying a reasonable extension of the standarthe particular case of a nanofluid confined in a narrow slit
bulk fluid viscosity definition applicable to nanofluids in pore with the inhomogeneity in the direction (that is or-
such narrow porefl1]. thogonal to the wall plangshe simplified major terms in the

In this paper we continue numerical evaluation of the PGgeneral expressio(8.34) of the first paper in Ref.8] for the
theoretical transport coefficients of nanofluids concentratingpG-theoretical viscosity of strongly inhomogeneous fluids
on the viscosity. Theoretical calculations of the PG-viscosityreduce to the formula
of nanofluids involve the fluid and wall molecule number
densities and contact values of the fluid-fluid and fluid-wall nsi(2) = n{4mn* (2) 7 (2)[ 1+ 7B*°(2)]?
pair correlation functions. These quantities are calculated in . %0
Sec. Il for model nanofluids confined in a pore of &.af +(16/97n* (2) 8" (2)}, 2.3
Refs.[10,11] using the EMD technique. In the course of

these calculations we pay special attention to angular deperﬁ-ard sphere gag=1/(ksT), kg is the Boltzmann constant

dence of the contact values of the pair correlation functionsr denotes temperaturey is the mass of a fluid molecule:

These data are further used to calculate major contribution . . e
to the PG-theoretical viscosity of the nanofluids so that th denotes the hardcore diameter of the fluid molecules specific

. g %o the fluid-fluid hardcore intermolecular interactions,
surface and fluid structure contributions are properly ac-

.o 3 ) . L

counted for. The results confirm sensitivity of the nanofluidger(é)it_ 1((22))0 oflsthteh(:r}laﬂgrf]li? dSIo;rll(caisf)theeqruIlf;wtmegueﬁ]:?s

viscosity to the surface and fluid structure details. In Sec. III]c I Y Th ,d' ionl R q

we describe NEMD-simulation data for the model fluids ob-'0"'OWs- 1N€ dIMENSIONIESS quantm;ti(z),

tained using the fifth order Gear predictor-corrector method %\ * * " 1

and examine thoroughly known heuristic expressions and 7)) ={2alv (Z)+(1/3)V1(Z)+‘/§V2(Z)]} ' 24

possible new candidates for the NEMD"experimental” vis- 24

%%?g}(/exo;rrt\ri]r?atri]c?:cp)yfrlgl/dess It%atl?;lcc?fssuga tr?:u:?;li?:els"ilrlr?prilggiis proportional to the visco relaxation time and incorporates
, . P - * *

expressions for the viscosity of nanofluids fail badly in all two essentially "fluid” contributionsy™(z) and v (2),

the studied cases leading to physically meaningless results w

(one of such cases was considered in REef]). The discus- v*(z)= f

sion in Sec. Il shows that this failure is because such sim- 2.5

plified expressions do not account properly for details of the :

fluid and surface structure via the corresponding pair corre- -

lation functions. In contrast, the PG-theoretical viscosity V;_‘(z)=f désing[n*(z—o cosh)—n*(z)]

proves to be not only physically meaningful, but also a nu- 0

merically accurate characteristic of the nanofluid flows.

where 5= (5/160%)(m/7B)Y? is the viscosity of a dilute

dé#sinfn* (z— o cosh)g(z,z— o cosb),
0

X g(z,z— o cos#), (2.6

Il. THEORETICAL BACKGROUND and the contributionv; (z) due to fluid-wall intermolecular

. . interactions
The PG transport theory concerns inhomogeneous fluids

(including nanofluids of nonreactive, structureless mol- ™

ecules on interfaces or in confinemefiglls) composed of V;(Z):f désinény,(z— 074,c086) gt (Z,2— 01,,COSH),

nonreactive, structureless molecules that cause the inhomo- 0 5

geneity of the nanofiuids. The fluid-fluid and fluid-wall in- 27

termolecular interactions are assumed to be pairwise add%hereg(z,z—acosa) is the contact value of the equilib-

tive, central and decomposable into the sum rium, fluid-fluid pair correlation functiong is the angle be-

tween the vector connecting the centers of mass of the inter-

@(rij) = du(rij) + os(rij) (2.1)  acting moleculesy;;, and the positivez direction, n},(z)
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TABLE I. Units of the MD simulations quantities.

Quantity Units
Number densityn ol
Velocity, u (e/m)Y?
Viscosity, 7 o ?(em)? <
TemperatureT €
Shear ratey o Y elm)Y?
Shear stress and presstuire, elo®
a o
b o

=n,(2)o” is the equilibrium, reduced number density of the  FIG. 1. Slit pore geometry used in the EMD and NEMD simu-
wall molecules,gs(z,z— o+,€0s6) is the contact value of lations.

the equilibrium, fluid-wall pair correlation function, arns},,

is the hardcore diameter specific to the fluid-wall hardcorevherer denotes the absolute value of the coordinate vector
intermolecular interactions. The quantigf °(z) is also de- between the centers of the interacting molecutess the
fined in terms of the contact values of the equilibrium fluid- effective molecular diameter, arddenotes the depth of the

fluid pair correlation function and reduced number density potential well.
The viscosity coefficient of Eq2.3) can be easily calcu-

m lated provided the equilibrium, reduced fluid and wall num-

B*°(2)= f d6 sin®d cos’ on* (z— o coso) ber densities, the equilibrium pair correlation function values
0 and the hardcore diameters are known for the composite po-

X g(z,z— o cOSH). (2.9 tentials of Eq.(2.1) corresponding to the actual potentials of

Egs.(2.9 and(2.10.

In what follows we omit the asterisk, assuming that all quan-
tities are reducedsee Table)l I1l. EQUILIBRIUM MD SIMULATION TECHNIQUE
There have been several assumptions used in deriving Eq.
(2.3 for the simplified version of the PG slit pore nanofluid
viscosity from the general expressit#34) of the first paper
in Ref.[8]. In particular,(i) those terms that are proportional therein), (ii) experimental data, andi) EMD simulations. In
to tensors composedAof antisymmetric combinations of th"?his stu’dy we used the EMD,simuIation method to recover
direction cosine vectoor have been neglected as they are notthe number densities and pair correlation function contact
expected to contribute significantly to the viscosity of theyalues of the model WCA and LJ nanofluids. In the course of
studied model nanofluidésee discussion in Sec. IV of the this simulation the reduced potential parameters of the fluid-
first paper in Ref[8]). Further, there has begit) a neglect  fluid and fluid-wall intermolecular interactions and molecu-
of dependence of the contact values of the pair correlatiofyr massesn were set equal to unitye=c=m=1. The
functions upon the in-plane angle of the polar coordinate  model nanofluidgcomposed oN;= 360 fluid atoms in each
system with the polar axesused in Eqs(2.3—(2.8). Both of  case were confined between parallel walls composed of im-
these assumptions may not be applicable to “real” nanoflumopile, structureless and nonreactive atoms of the atomic
ids, and if such is the case, the general expressions, Eghass equal to unity. The pore widthwas set equal to 5d.
(3.34 of the first paper and E¢3.24) of the second paperin and was defined as the distance between the two parallel
Ref.[8] (the case of nanofluid mixturesshould be used.  planes through the centers of the surface layers of wall atoms
In this paper we use Ed2.3) for the PG viscosity of a (see Fig. 1 Each wall consisted of three layers of atoms
nanofluid in a slit pore to calculate the viscosity of two arranged in the fcc lattice structure of 72 atoms per layer
model nanofluids confined in structured slit pores whergotalling to N,,=216 atoms. Due to immobility of the wall
fluid-fluid and fluid-wall intermolecular interactions are both molecu'es there was the momentum production in the Sys_
modelled either(l) with the WCA repulsive potentialthe  tems that led to the excess heat production. This heat was
WCA system, removed from the fluids by the temperature scaling proce-
dure[15]. The pore geometry and the model WCA fluid were
(0)12 (0 chosen to mimic the simulation conditions of Ref$0,11]
€T r
0, r=2Y8g,

The equilibrium structure factors involved in Eg.3) can
be obtained fronii) integral equations of equilibrium statis-
tical mechanicgsee, for example, Ref16], and references

6
+ €, I’<21/6(T

' (2.9 so that our results could be easily compared to those ob-
tained previously.

The reduced molecular dynam(i®ID) simulation param-
eters are summarized in Table Il for both model fluids. The
MD simulations were performed for two different average
fluid number densities defined as in Rgft0,11],

dwealr) =
or (1) with the Lennard-Joned.J) potential(the LJ system

7

dLy(r)=4e

, >0, (2.10 nL,=N¢/V;, (3.1
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TABLE Il. Reduced parameters of the MD simulations.

Simulation box sizes Pore Fluid av. Wall av.
width, number number Temperature  Parameter  Parameter
L Ly=Ly H density,nf,  density,n?, T a b
7.81 12.6373 5.1 0.442 0.85 0.729 2.2977 0.6775
8.7975 10.8195 5.1 0.603 0.85 0.958 1.9672 0.9244

where N; is the number of fluid atoms in the “roughly” wherer =280 and¢(z) is the WCA potential of Eq(2.9)
calculated volume/; of the pore occupied by the fluid/; or the LJ potential of Eq(2.10. The WCA hardcore diam-
=HL,L,. This definition of the average fluid density was eter is not an attractive choice in the case of nanofluids as it
chosen for convenience of comparison of our simulation redepends upon the nanofluid density and therefore, upon a
sults with those of Ref[10]. Actual average fluid densities position within the pore. Due to our choice of the parameters
are larger than the “rough” ones due to the fact that the 720f the model intermolecular interaction potentials for the
wall atoms framing the pore space on each sideditection =~ WCA and LJ systems we have for our systems oy,
occupy some of the pore space. The average wall density s o ;= ogy= owca -

defined as The fluid-fluid pair correlation function values specific to
w molecular contact were calculated using the histogram
Nav=Nw/Vy, (3.2 method and accuracy considerations discussed in[R@e},.
whereN,, is the number of wall molecules and,=bL,L, 9ij(z,2— 0 c0s0) =2(N;;)/[n(2)n;(z— o cosH)V, V],
+ wo°N,,/18 is the wall volume calculated with regard to the (3.4

adopted wall geometry, Fig. 1. This definition of the wall

volumeV,, seems more appropriate than that of R&0] as  whereV; is the volume of the bin centered aand contain-
it does not include the pore space between wall atoms of thiag the center of the moleculgV; is the volume occupied by
surface layers. This modified definition of the wall volume the bin containing collision partnejof the moleculd at the

accounts for the difference in numerical values of the wallpolar angles betweeé and 6+A#,

parametera andb listed in Table Il and those of Ref10]

specific to the same average wall density. 5 AR)\?

For the MD simulations we used a fifth order Gear Vj=mo"2+3-—+ 7) [cosf—coq 6+ A0)]AR,
predictor-corrector algorithm with the reduced time step (3.5
t=0.008. In the case of the EMD simulations of nanofluid
structure properties this algorithm leads to reliable andig=x/50 denotes the width of & bin, (N;;) is the average
physically meaningful results while other known algorithms number of such pairs of moleculesvith their centers in the
(e.g., Verlet's leapfrog algorithnj15]) are not accurate pin z and moleculeg with their centers in the volum/|,
enough to supply realistic values of such propert&e dis-  andn;(z) andn;(z— o cosé) denote the values of the fluid
cussion in Sec. ¥ The periodic boundary conditions were nymber density corresponding to the bins centerezl atd
applied in all three directions. The need to use the periodig— ; cosg, respectively. For our choice dfz,A9 and AR
boundary condition in the direction was due to the fact that the volumeV; was less than 510°°, and therefore, to keep
separation of the wall atoms was large enough for fluid molthe statistical error of the calculations of the pair correlation

ecules to penetrate beyond the wall surface layers. The firgfinction contact values within 20% we performed the EMD
50 000 EMD time steps were discarded and followed bysimylations for four million time steps.

further 3950000 of the EMD time steps. The equilibrium  The fluid-wall pair correlation function contact values
ngmber density prof.|les were calculated by dividing theere calculated using Eq&3.4) and (3.5) where in this case
width of the pore in binsAz=5.1x10"?, and accumulating  the indexi referred to a fluid molecule, the indgxo a wall
histograms of the numbers of moleculssin each bin. molecule(N;;) denoted the average number of pairs of con-
The EMD calculation of the fluid-fluid and fluid-wall pair tacting molecules, and the number densitfz— o cos6)
correlation function contact valuege¢(z,z— o cosf) and  as that of the wall molecules. This number density was set
9tw(Z,2— o cosd), respectively, required an assumption con-to pe equal to &/[ 73], m=1, within the actual space
cerning the maximal distance between the molecular centegsccupied by wall molecules and to zero everywhere else in
at which the molecules could be considered in contact. Thighe walls.
distance was set equal to+ AR [where AR=Az/500], or All integrals in Eqs.(2.5—(2.8) were computed summing
1.000102Zr4, whereoy denotes a hardcore diameter specificyp the numerical values of the corresponding integral kernels
to the hardcore potential of Eq&2.1), (2.2). While both the  and also using the composite trapezoid fl@]. The results
WCA and BH hardcore diameters could be used, we chosgopincided to the fourth digit after the comma.

the BH hardcore diametergy that does not depend uponthe  The contact values of the fluid-fluid and fluid-wall pair

number density and is defined by the expres$its] correlation functions specific to the model WCA and LJ
, nanofluid systems obtained by means of the above EMD
UBHZJ dz{1—exd —Bo(2)]}, (3.3 techr]lque are visualized in Flgs:. 2-9. At the same number
0 densities and temperatures motion of the LJ fluid molecules
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FIG. 2. The EMD contact values of the fluid-fluid pair correla- ~ FIG. 4. The EMD contact values of the fluid-fluid pair correla-
tion function for the model WCA nanofluid after 4 million time tion function for the model WCA nanofluid after 4 million time
steps fom],,=0.442 andT=0.729. steps fom!,=0.603 andT=0.958.

is more correlated than that of the WCA fluid molecules dueforced to enter the available pore space between wall atoms
to the presence of the attractive interactions. In both casesf the wall surface layers. This phenomenon is reflected by a
the excluded volume effects and the attractive interactions igignificant decrease in width and magnitude of the picks lo-
the case of the LJ fluid lead to the number of preferentiacated about the positiong£ —2.10 to —2.35, 8/7=1.0 to
positions of the contacting molecules that manifest them9.9) in the case of the first wall and the positiorzs<2.10 to
selves via local maxima of the pair correlation function con-2.35, 6/7=0.0 to 0.2 in the case of the second wall, and a
tact values. The difference in the structure of the two modekimultaneous significant increase in the width and magnitude
fluids is enhanced near the pore walls for both densitiesof the picks located at the positiong=—1.5 to —2.55,
These data confirm our results and those obtained in nume##=1.0 to 0.5 and =1.5 to 2.55,0/7=0 to 0.5 (see
ous EMD studies of the pore nanofluid density, that theFigs. 3, 5 and Figs. 7, 9, respectivel{The presence of the
structure of nanopore fluids differs markedly from that of theattractive interactions in the model LJ systems does not af-
corresponding bulk fluids. fect significantly the positions of the picks with respect to
For both model fluids the fluid-wall correlations are en-those in the case of the model WCA system, but the magni-
hanced at large densities when more fluid molecules artude of the picks grows for the LJ system.

40000 40000

30000 30000

20000 20000

g,.{2:8)
9,,(2.8)

10000 10000

0.0 0.0

e LY LT e SSRMEAINGE

1.0

FIG. 3. The EMD contact values of the fluid-wall pair correla-  FIG. 5. The EMD contact values of the fluid-wall pair correla-
tion function for the model WCA nanofluid after 4 million time tion function for the model WCA nanofluid after 4 million time
steps fom],,=0.442 andT=0.729. steps fom!,=0.603 andT=0.958.
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FIG. 6. The EMD contact values of the fluid-fluid pair correla-

tion function for the model LJ nanofluid after 4 million time steps

FIG. 8. The EMD contact values of the fluid-fluid pair correla-
for nf,=0.442 andT=0.729.

tion function for the model LJ nanofluid after 4 million time steps
for n!,=0.603 andT =0.958.

IV. NONEQUILIBRIUM MD SIMULATION TECHNIQUE LJ fluids of Sec. Ill. This flow was caused by the foreg
. . . . acting on each molecule in thedirection (see Fig. 1 and
For t‘)‘UIk qu_|ds the ,’,\IEMD simulation _method is an alter- was t?wught to mimic a gravity flow of a simple r?anofluid in
native, “experimental” route for calculation of the transport 2 nanopore with atomistic wallg10,11. The simulations
coefficients. It gssentlally involves the sta}ndard definition of .o again performed using the fifth order Gear predictor-
the qual tensorial viscosity(r) of bulk ﬂl.“ds via the local o rector algorithm to obtain the density and streaming ve-
tensorial shear stre§¥r) and local tensorial strain ratgr),

locity profiles. The width of the pore was divided in 50
P(r)=9(r): y(r), (4.1) bins, and the value of the force was set equal to 0.02 in the

units of e/o. Other simulation parameters were the same as
where a colon denotes the double inner product of the fourtthose used in the EMD simulations. There are several other
rank tensoryp(r) and the second rank tensgfr). For lami-

algorithms available for the NEMD simulations of transport
nar flows of bulk fluids the viscosity tensor in Eg.1) does  properties of fluids one of which, so-called IMC algorithm
not depend on a position.

developed in the first paper of R¢fl2], was used in previ-
In addition to the EMD simulations we performend the ous works[10,11] for the NEMD simulations of the Poi-

NEMD simulations of the Poiseuille flow of the WCA and seuille flow of nanofluids. However, the IMC algorithm in-

40000 40000

30000 30000

20000 20000

g,,(2:0)
g,.(2.8)

10000 10000

0.0

PLLLTTWALLTY VR

1.0

FIG. 7. The EMD contact values of the fluid-wall pair correla-

FIG. 9. The EMD contact values of the fluid-wall pair correla-
tion function for the model LJ nanofluid after 4 million time steps tion function for the model LJ nanofluid after 4 million time steps
for nf,=0.442 andT=0.729.

for n!,=0.603 andT =0.958.
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cludes implicit assumptions that reduce its applicability tothe parabolic fit, the linear velocity profile fit is chosen so as
the systems of low fluid density and/or low potential field u,(z=*=H/2)=0 and the maximal value af,(z) is equal to
gradients. From analysis of the results obtained in this studyhat in the pore centar,(0),
and in previous work§10,11,18 (see Sec. Vit follows that 2
the use of the IMC algorithm in the case of nanofluids leads _ "o o
to unrealistic, “oversmoothed” velocity profilell0,11,18 Thotal 2) = FeH J_ledz P(Z)HALU0) = u( = HI2)]}.
of the Poiseuille flow and the underestimated NEMD viscos- (4.6
ity coefficients.

For the physical systems and the MD simulation tech-This evaluation means that the pore viscosity is roughly
nique used in our simulations E64.1) leads to the explicit equated to that of the pore Couette flow caused by dragging
expression for the standard scalar local viscosity of the bulkhe thin layer of the pore fluid in the pore center in the

fluid, direction. As we discuss in Sec. V, this evaluation supplies
relatively reasonable values of the average pore viscosity that
(PxA2)) for medium dense nanofluids can be used as a good evalua-
7nemp(2) = — lim { @ ] (4.2 tion “from above.”
Fewol Y Other possible candidates for the “coarse-grained” pore

; viscosity can be suggested upon consideration of the physi-
whereP,(2) is thexz component of the shear stress tensor y 99 P phy

. . t;fal nature of the process of the momentum redistribution in
(---) means the time average that substitutes the ensembjfe system. The major contribution to this process comes

average by virtue of the ergodicity theorem, from hard-core collisions over the “minimal collision sur-
face” of direct molecular contact. In the case of spherical
Iux(2) 4.3 molecules this surface is a sphere of the radius equal to the
Jz hardcore diametar of the molecules. This consideration can
be deducted from explicit expressions for transport coeffi-
is the only nonzero component of the strain rate tensor, angients of fluids obtained both in classical kinetic theories
uy(z) is the x component of the streaming velocity of the (see, for example, Ref19], and references thergimnd in
nanofluid. In general, the ViSCOSity of EmZ) does not de- the PG [heor)[see, for examp]e, Eq334) of the first paper
pend on the positioa for the laminar flow and can be easily in Ref. [8]]. This observation together with the consider-
calculated provided the quantiti€d,,(z)) and y(z) are  ations that led to Eq(4.4) and approximation of the strain
known, for example, from the NEMD simulations. In the rate by the corresponding finite differences supply the fol-
IMC method the average momentum flux is approximated byowing heuristic quantities:
the position-dependent expressid? (z))=F.[5dz p(z'),
and therefore, from Eq4.2) it follows that for F.—0 the
IMC viscosity for our systems is

Y (z)=

70(2)=2F o f " 47 p(z+ 2 [uy(z+ o)~ uyz— )],
@7

z IUx(2)
Mmc(2)=— FeJ dZ'P(Z')/ 97 (4.4 ol2
’ 770/2(2)=F90J lde'p(Z+Z’)/[uX(Z+a/2)

From previous studiglsl1] and our result$see discussion in
Sec. \} it is known that Eq(4.4) leads to unphysicadiver- —Ux(z—a/2)]. (4.8
gent and negatiyevalues of the viscosity due to large devia-

tions of the velocity profile from the parabolic form that lead these quantities may lead to meaningilough pooy values
to strong oscillations ofy(z). A pore-average substitute for d : ay gnp ;
of the pore viscosity far from the pore center and to diver-

Z) can be provided in the case when the total momen- C o
,{Z'mc]glu)x througrf)the pore cross section is used in @)  JEnCies in the pore center, due to the symmetry of the flow

. o . ‘geometry.
and the velocity profile is roughly approximated by the para A “local” substitute 7yc ((z) for the IMC viscosity of

: . . -
bolic one(see the first paper in Reffl2]), uy(z) =c,2"+ ¢, Eg. (4.4 can be supplied if the partial derivative of the

where the coefficients, andc, are obtained from the mean- streaming velocity in this equation is substituted by the cor-
square fit of the NEMD velocity profile by the parabolic one. (r)esponding finite difference

For the pore geometry considered in our study this leads t

From our NEMD results described in Sec. V it follows that

the following expression for the pore average viscosity z
Mp-avs 7imc 1(2) = —FeH JOdZ'P(Z')/{Z[Ux(Z)—Ux(o)]}-
H/2 (4.9
alZ2)=—F dz'p(z')/[2Hc,]. 4.
Tp-al2) effHIZ p(z))I12Hc,] 49 Once again, our NEMD results discussed in Sec. V prove

that this quantity supplies unphysical values of the pore vis-
From the results of our study it followsSec. V) that 7,,,  cosity.
supplies much underestimated but still physically meaningful Failure of all the above bulk-fluid based and heuristic ap-
evaluation of the pore nanofluid viscosity “from beneath.” proximations of the average and “local” pore viscosity is
Another physically meaningful evaluation of the averagediscussed in Sec. V. The physical meaning of this failure is
pore viscosity can be obtained from Ed.5) if, instead of  that none of these approximations account accurately for the
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nanofluid structure properties described by the fluid-fluid and 20

fluid-wall correlation functions. In contrast to these heuristic :
guantities, the PG theoretical expressi@?3) incorporates 154
the details of the nanofluid and wall structure via the pair - ]

correlation function contact values and therefore, leads to
physically meaningful and numerically reasonable values of
the pore viscosity for all the considered nanofluid systems.
Finally, in fluid mechanics the shear stress specific to the
turbulent flows can be sometimes approximated as a func- / \
tional of the nonlocal turbulent viscosity and the strain rate. 00 . , , .
For the system geometry used in this study such an approxi- 2 -1 0 1 2
mation takes the formil1]

viscosity, o*(me)"?

sz(z)=—fozdz’ n(z;z—2")y(Z"). (4.10

The reasons supporting this approximation are provided by
the nonlocal nature of the turbulent vortices that define the
type of flow and simplicity of such an approximation. In the
case of nanofluids confined in nanopores and at interfaces of
several molecular diameters in width turbulent vortices can- -
not exist, and therefore, there is no physical reason to expect ) 2/

the approximation4.10 to be physically meaningful. The . ] . ) .
results of this study and that of the previous wptR] prove EIG. 10. The PG-theoretical wscosws_m and den3|_ty profiles
that the nonlocal nature of the nanofluid viscosity is properly(SOlid curves of the model WCA nanofiuid after 4 million EMD
accounted for in the PG theoretical expressions. In these efMe Steps fom,,=0.442 andT=0.729. Straight lines in the top
pressions the seemingly local values assigned to the nanfgure: (1) — the average PG-theoretical viscosifyj=1.193;(2)
fluid viscosity at the positiorr are calculated in terms of .~ "wotal— 1.85L; (3) ---, 77p.a/=0.739, ¢;=0.00608; the bu'k
integrals of the structure factors of the nanofluids over thé"scof't_y Is equal to 0.350. St_raught lines in the bottom f'gm&'.
sphere of the radius centered at the position and there- —_* "av ™ temperature profile. Parameters; molecular mass;

. . . o ,o potential parameters.
fore, are essentially nonlocal. Physical meaning of this inteX” P P

gration is that the transport coefficients represent collectiv%n;\lz 0.603T=0.958). In the case of the model LJ nano-
response of the system to a disturbance and thereforqigs the presence of attractive interactions manifests itself
emerge as a consequence of redistribution of the mass, Mgy that the density profiles become more structured, their
mentum and energy in the system via the molecular collision,5xima higher and minima deeper than those in the case of
mechanism. A minimal number of such collisions is requiretine model WCA nanofluids at the corresponding average
for the system to respond to the disturbance, and this is repjensities and temperatures. This confirms an intuitive expec-
resented by the integration over the “minimal collision sur-iation that in addition to the excluded volume effects the
face.” This is yet another friutful realization of the collective 4itractive interactions supply a powerful mechanism for ef-
mode description of many-;?‘aruC'e system gynamlcs. thafective layering of the nanofluid molecules. Within the LJ
supplies convenience of the “coarse-grained,” or quasiconpanofiuid layers near the walls the number density can be
tinual, representation of the system transport properties.  tywice as large as the corresponding average (@ee, for
example, Fig. 12 In the case of the model WCA systems
V. RESULTS AND DISCUSSION fluid layers are less prominent at the pore center than those
of the model LJ fluids at the corresponding average densities.
The most striking result of our calculation is that the av-
erage PG-theoretical viscosity of all the model nanofluids
In addition to the contact values of the pair correlationexceeds that of the WCA bulk fluid at the corresponding
functions, calculation of the PG theoretical viscosity of Eq.densities and temperatures by a factor from 3 {thé WCA
(2.3 requires data on the fluid number density. In our EMDfluid viscosity is the largest possible bulk fluid viscosity at a
simulations we recovered the number density profiles of thgjiven fluid type, density and temperaturd@hese findings
model nanofluids and used this data together with the data atorrelate with well-known experimental data on the viscosity
the contact values of the pair correlation functions to calcuof “real” nanofluids [4,20]. Although these experimental
late the integrals of Eqg2.6)—(2.8) and the PG theoretical data were obtained for nanofluids composed of complicated
viscosity. The final results obtained after 4 million EMD molecules, and therefore, cannot be compared directly with
time steps for the model WCA systems are shown on Figsthose obtained in our study, the average PG theoretical vis-
10 and 11, and for the model LJ systems on Figs. 12 and 12osity of the model nanofluids reflects the major tendency of
For both types of the model nanofluids the density profileshe experimental viscosity towards a significant increage
reflect the fact that fluid molecules can penetrate between th® 4 times in its value compared to that of the corresponding
wall atoms of the surface layers. This phenomenon becomasulk fluids. In this respect our new data differ from those
more prominent at the high average density and temperatuksbtained in the previous woikLO] where the Verlet's leap-

density, ng®

o
=)

A. EMD simulations: the PG theoretical viscosities
and nanofluid structure
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FIG. 11. The PG-theoretical viscosityy;, and density profiles
(solid curve$ of the model WCA nanofluid after 4 million EMD
time steps fom!,=0.603 andT=0.958. Straight lines in the top
figure: (1) —, the average PG-theoretical viscosity),=5.762;(2)
==, Tiota=4.966;(3) -+-, 7p.y=1.900,c,=0.00317; the bulk vis-
cosity is equal to 0.700. Straight lines in the bottom figue:—,
nl,; ---, temperature profile. Parameters; molecular masss,a,
potential parameters.
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FIG. 12. The PG-theoretical viscosityy;, and density profiles
(solid curve$ of the model LJ nanofluid after 4 million EMD time

steps fomf,=0.442 andT=0.729. Straight lines in the top figure:

(1) —, the average PG-theoretical viscositfj,=1.716;(2) ----,
Dota=2.798; (3) ---, 7p.a=1.136, c,=0.0039; the WCA bulk
viscosity is equal to 0.350. Straight lines in the bottom figuig:
—, n;\,; ---, temperature profile. Parameters; molecular mass;
g,0, potential parameters.
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FIG. 13. The PG-theoretical viscosityy;, and density profiles
(solid curves of the model LJ nanofluid after 4 million EMD time
steps forn;\,=0.603 andTl =0.958. Straight lines in the top figure:
(1) —, the average PG-theoretical viscosityf,=4.983;(2) ----,
Nota=6.764; (3) ---, 7p.0v=2.415, ¢,=0.00252; the WCA bulk
viscosity is equal to 0.700. Straight lines in the bottom figuie:
—_, ngv; ---, temperature profile. Parameters; molecular mass;
€,0, potential parameters.

frog algorithm, too widez bins and large volumey;; al-
lowed for the contacting molecule pairs led to “smoothing”
the contact values of the pair correlation functions, and there-
fore, to largely underestimated values of the nanofluid vis-
cosity. The integral expressions of E¢28.6)—(2.8) are very
sensitive to the shape of the correlation functions. This shape
can be easily oversmoothed when too large voluMgsare
assumed as the molecular contact volume. From our recent
computer experiments we found that the optiregl value
should be set from 10 to 107 °. If this value is larger than
103 the calculated correlation functions do not reflect prop-
erly local order in nanofluids. At th&;; values lower than
10 ° statistical errors become very large and simulation time
increases by the order of magnitude.

The complex, layered structure of the model nanofluids
leads to significant increase in the “local” nanofluid viscos-
ity reflected by Eq(2.3) via the integral contributions of the
fluid number density and contact values of the pair correla-
tion functions, Eqs(2.6)—(2.8). Although the viscosity pro-
file carries effects of strong density variations over the fluid
layers, the magnitude of its oscillations is low. In the “free”
pore space where there are no wall atafins., at the dis-
tances larger than/2 from the wallg the magnitude of the
viscosity profile oscillations is largest in the case of the
model LJ fluid at the lower average density, but it does not
exceed 20% of the viscosity value in the pore center. The
magnitude of such oscillations in the case of the model WCA
fluid and for the denser LJ fluid does not exceed 10% of the
corresponding viscosity values in the pore center. This re-
flects complicated consequences of the ordering role of the
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FIG. 14. The model WCA nanofluid: the NEMD velocitiot- FIG. 15. The model WCA nanofluid: the NEMD velocitigot-

tom) and strain rategu,(z)/dz, (top) profiles after 1 milion EMD  tom) and strain rategu,(z)/dz, (top) profiles after 1 million EMD
time steps fomn!,=0.442 andT=0.729. The bottom figure: the time steps forn{,=0.603 andT=0.958. The bottom figure: the
developed profileu,(z); the two fluctuating lines parallel to the developed profileu,(z); the two fluctuating lines parallel to the
coordinate axis: low fluctuationsi,(z); large fluctuationsu,(z). coordinate axis: low fluctuationsi,(z); large fluctuationsu,(z).
Parametersm, molecular massg,o, potential parameters. Parametersm, molecular massg,o, potential parameters.

attractive intermolecular interactions. At the lower averag&e fluid-fluid attractive intermolecular interactions is largely
density the fluid-wall attractive intermolecular interactions xceeded by the increase in the LJ nanofluid viscosity due to
lead to an increase in the LJ nanofluid average theoretlcq e attractive interactions with the wall atoms. However, in

. X o )
\élscotsny by 46% co_mpl)are? todth_at of ftTr? ch'g‘ naToqulldthe case of the high average density these alternative tenden-

ue 1o an increase In local ordering ot the TuId MOIECUIES oo 4 ogt compensate each other. The calculated average
that manifests itself via an increase in the local densit

o . . PG viscosity of the model LJ nanofluid is about 14% lower
within thg fluid Iaygrs and the corresponding contact Value?han the average PG theoretical viscosity of the model WCA
]f:f .tdhe plalr ciorrelanon.tfgncnlons.' Intk?ulk LtJ flq![ds, Whﬁg‘ @ nanofiuid. This deviation is within the statistical error of the
uid molecule moves It INVolves In the motion Its neig gr- viscosity calculations, and therefore, further sophisticated
hood via attractive interactions of the molecules. These atyip simulations are needed to recover the actual values of

tractive” correlations lead to a well known decrease by 30%, . b tical Vi itv of th | flui t th
in the viscosity of the bulk LJ fluid compared to that of the higeh ff/erazoer%gr?sitcscos' y of the model nanofiuids at the

bulk WCA fluid at the same average density and temperature
[21]. In the model LJ nanofluids this decrease is overrun by
the increase in the viscosity due to the fluid-wall attractive
intermolecular interactions. At the lower average density this
increase in the viscosity of the LJ nanofluids compared to Our NEMD simulations of the Poiseuille flow of the
that of the WCA nanofluid is a phenomenon that does nomodel WCA and LJ nanofluids confirmed findings of Ref.
have its counterpart for bulk fluids. [11] that for nanofluids confined in the pore of &.ih width

At the high average density the correlated motion of thethe streaming velocity profile differs from the parabolic one
well ordered layers of the LJ nanofluid “help” the LJ nano- and possesses inflections that lead to oscillations of the cor-
fluid to transform the shear stress into collective fluid mo-responding strain rate profile. In our case of immobile wall
tion, and therefore, lead to a decrease in the LJ nanofluidtoms and small acting forde,=0.02, the streaming veloc-
viscosity. When a LJ nanofluid layer moves it involves in theity profiles became more structured and revealed more in-
motion its neighboring layers via attractive interactions offlection regions than that of Refl1], where largerz bins,
the molecules in the neighboring layers. On the other handarger force value F.=0.5), and mobile wall atoms were
at high densities the fluid-wall attractive intermolecular in-used in the simulations. For both types of the nanofluids we
teractions lead to increase in the viscosity of the model Lperformed 6 million time steps of the NEMD simulations to
nanofluid via an increase in the density and the contact valebtain steady and relatively smooth streaming velocity pro-
ues of the fluid-fluid pair correlation functions specific to thefiles (see Figs. 14-21with fluctuations within the 15%
fluid layers near the walls. Similar to the case of the lowdentange. According to our expectations, the flow of the model
sities, the decrease in the LJ nanofluid viscosity caused blJ fluid stabilizes faster than that of the model WCA fluid

B. NEMD simulations: the velocity and density profiles,
and heuristic viscosities
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FIG. 18. The model WCA nanofluid: the NEMD velocitpot-

steps fornf,=0.442 andT=0.729. The bottom figure: the devel- tom) and strain rategu,(z)/z, (top) profiles after 6 million EMD
oped profileu,(2); the two fluctuating lines parallel to the coordi- time steps fom[,=0.442 andT=0.729. The bottom figure: the

nate axis: low fluctuationsy,(z); large fluctuationsy,(z). Param-
eters:m, molecular massg,o, molecular paremeters.
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FIG. 17. The model LJ nanofluid: the NEMD velociiyottom)
and strain rategu,(z)/dz, (top) profiles after 1 million EMD time
steps fornf,=0.603 andT=0.958. The bottom figure: the devel-
oped profile,u,(z); the two fluctuating lines parallel to the coordi-
nate axis: low fluctuationsy,(z); large fluctuationsy,(z). Param-
eters:m, molecular massg,o, potential parameters.

developed profileu,(z); the two fluctuating lines parallel to the
coordinate axis: low fluctuationsi,(z); large fluctuationsu,(z).
Parametersm, molecular massgo, potential parameters.

0.06

g
o
@

=]
o
o
1

o
o
@

strain rate, o”'(e/m)"?

o
o
&

velocity, (e/m)"?

0.00 ~

zlc

FIG. 19. The model WCA nanofluid: the NEMD velocitigot-
tom) and strain rategu,(z)/dz, (top) profiles after 6 million EMD
time steps fom,=0.603 andT=0.958. The bottom figure: the
developed profiley,(z); the two fluctuating lines parallel to the
coordinate axis: low fluctuationsi,(z); large fluctuationsp,(z).
Parametersm, molecular mass¢o, potential parameters.
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FIG. 21. The model LJ nanofluid: the NEMD velocityottom
and strain rategu,(z)/dz, (top) profiles after 6 million EMD time
steps fornf,=0.603 andT=0.958. The bottom figure: the devel-
oped profile,u,(z); the two fluctuating lines parallel to the coordi-
nate axis: low fluctuationsy,(z); large fluctuationsiy,(z). Param-
eters:m, molecular massg,o, potential parameters.

FIG. 20. The model LJ nanofluid: the NEMD velociiyottom)
and strain rategu,(z)/dz, (top) profiles after 6 million EMD time
steps forn{,=0.442 andT=0.729. The bottom figure: the devel-
oped profile,u,(z); the two fluctuating lines parallel to the coordi-
nate axis: low fluctuationsy,(z); large fluctuationsy,(z). Param-
eters:m, molecular massg, o, potential paramters.

due to the presence of the attractive interactimnpare, NEMD velocity profile specific to the LJ nanofluid is re-
for example, the corresponding streaming velocity profileluced by about 20% compared to that of the WCA nanofluid,
after 1 million NEMD time steps shown in Figs. 14, 15 and and therefore, the LJ nanofluid viscosity, as reflected by the
16, 17. At the lower average density all values of the NEMD simulations, seems to be larger than that of the WCA
streaming velocity of the LJ nanofluid flow are reduced bynanofluid. We note here again, that our NEMD statistical
about 45% and the streaming velocity profile is flatter com-error of the velocity profile computatiortsaused by the lo-
pared to those of the streaming velocity in the case of th&al velocity fluctuations was about 15% after 6 million
model WCA nanofluid. This agrees quantitatively with the NEMD time steps. Therefore, the NEMD streaming velocity
PG-theoretical prediction that the average viscosity of theprofile at the high average density lies almost within the
model LJ nanofluid is larger by about 46% than that of the‘experimental” error from that of the WCA nanofluid.
model WCA nanofluid at the lower average densigge We also note that relaxation processes in the model WCA
Figs. 10 and 1R Therefore, we confirmed the prediction of nanofluid are much slower than those in the model LJ fluid at
the PG theory that in the case of nanofluids the effects of théhe same conditions, and therefore, further simulations for
fluid-wall attractive intermolecular interactions can signifi- additional several million NEMD time steps may be needed
cantly override effects caused by the fluid-fluid attractive in-to observe the same steady state of the WCA nanofluid as
termolecular interactions and lead to about 45% increase ithat of the LJ one after 6 million time steps.

the viscosity of the model LJ nanofluid compared to that of Numerical evaluation of the heuristic expressiadsd),

the model WCA nanofluid at the same conditions, in contrast4.5), (4.6), (4.7), (4.8), and(4.9) confirmed that only two of

to the case of the corresponding bulk fluids. them, 7,5, and 7, Of Egs. (4.5 and (4.6), respectively,

In the case of high average density the streaming velocitgan supply physically meaningful values of the nanofluid
profiles of the LJ and WCA nanofluids closely approach eaclviscosity. These values are shown in Figs. 10-13 and can be
other (the deviation in the average velocity values are aboutised for rough evaluation of the average viscosity of the
20%). This means that the viscosity of the LJ nanofluid studied model nanofluids “from beneath’s(_,,) and “from
increases much slower with an increase in the average deabove” (7,) fairly successfully. For three case studies out
sity than the viscosity of the WCA nanofluid, again confirm- of a total of four the average PG theoretical viscosity lies
ing the tendency predicted by the PG transport thdsge  between the corresponding,_,, and 7, values. However,
Figs. 11 and 1B The average PG viscosity of the model LJ in the case of the WCA nanofluid at the high density,
nanofluid at this density is 13% less than that of the WCAfails to supply the proper upper bound, and also the value of
nanofluid. Noticing that this deviation is less than the error of7p.a, is t00 low to be considered as a reasonable lower bound
the viscosity calculations in our EMD simulations, we con-(see Fig. 11 This indicates that heuristic expressig@sb)
clude that the PG-theoretical average viscosities of the modeind (4.6) are likely to fail at high densities. We demonstrate
LJ and WCA nanofluids practically coincide. However, the below, that such a failure is typical for empirical formulas
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FIG. 22. The NEMD simulations: the profiles of the heuristic
viscosities(top) and number densnty of the WCA nanofluid after 6
million NEMD time steps forn!,=0.442 andT=0.729. The top
figure: (1) thin dash-dot curvesyc(2); (2) thick dash-dot curves,
e 1(2); (3) thick solid curves,n,(z); (4) thin solid curves,
1412(2). The bottom figure(1) solid curve, the number densit{2)
dash-dot curve, temperature. Parametersmolecular massg,o,
potential parameters.
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FIG. 24. The NEMD simulations: the profiles of the heuristic
viscosities(top) and number densny of the LJ nanofluid after 6
million NEMD time steps forn!,=0.442 andT=0.729. The top
figure: (1) thin dash-dot curvesyyc(2); (2) thick dash-dot curves,
7ive 1(2); (3) thick solid curves,n,(z); (4) thin solid curves,
7,12(2). The bottom figure(1) solid curve, the number densit{2)
dash-dot curve, temperature. Parametersmolecular massg,o,
potential parameters.
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FIG. 25. The NEMD simulations: the profiles of the heuristic

viscosities(top) and number density of the WCA nanofluid after 6 viscosities(top) and number density of the LJ nanofluid after 6

million NEMD time steps forn},,=0.603 andT=0.958. The top
figure: (1) thin dash-dot curvesy,yc(2); (2) thick dash-dot curves,
e 1(2); (3) thick solid curves,7,(z); (4) thin solid curves,
1412(2). The bottom figure(1) solid curve, the number densit{2)
dash-dot curve, temperature. Parametersmolecular massg,o,
potential parameters.

million NEMD time steps forn!,=0.603 andT=0.958. The top
figure: (1) thin dash-dot curvesyyc(2); (2) thick dash-dot curves,
e 1(2); (3) thick solid curves,n,(z); (4) thin solid curves,
7+12(2). The bottom figure(1) solid curve, the number densit{2)
dash-dot curve, temperature. Parametersmolecular massz,o,
potential parameters.
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that do not incorporate details of the nanofluid structure. tors over the length scale comparable to the fluid particle
The results of our calculations of the heuristics viscositiegdlimensions can lead to a dramatical change in the fluid trans-
defined by Eqs(4.4), (4.7), (4.8), and (4.9 are shown in  port properties of such fluids compared to those of the cor-
Figs. 22—25. Due to the oscillations of the strain rate profilegesponding bulk fluids. The major contributions due to the
the quantity nyc fails badly everywhere within the pore fluid structure come into the fluid transport properties via the
supplying unphysical(negative and divergentnumerical number density and pair correlation functions, and therefore,
values of the nanofluid viscosity for all the case studies. Thany physically meaningful expression for transport coeffi-
other three quantitie®, ,7,,,, and nucs, are divergent in  cients of such fluids has to incorporate the information on the
the pore center due to the symmetry of the velocity profile.fluid number density and pair correlation functions, at the
The NEMD temperature and density profiles recovered irvery least. A strong feature of the PG transport theory is that
the NEMD simulations are shown in Figs. 22—25. While thein this theory the transport coefficients of inhomogeneous
temperature was constant within the pore space, it was lowdluids are expressed in terms of tequilibrium structure fac-
by about 14% next to the wall surface atoms, because of ators, and therefore, are well-defined and can be easily calcu-
increase in statistical errors due to the low density of thdated.
fluids at positions less thaa/2 from the pore walls. The In the case of nanosystenfise., systems composed of a
NEMD density profiles for all the case studies are almostsmall nhumber of molecules within the space dimensions
identical in the shape and magnitude to those obtained in theomparable to those of the system particlése physical
EMD simulations(the deviations do not exceed J7%his  meaning of the description of the systems properties in terms
again confirms a well known fact that the laminar flow doesof the collective modes changes. For such systems this de-

not affect the equilibrium structure of nanofluids. scription does not supply “macroscopic” physical proper-
ties; rather, it supplies probabilistic, expectation values of
VI. CONCLUSIONS such properties. The average, physically measurable trans-

] ) ) port coefficients are further supplied by averaging of such

In this study we calculated the viscosity of the modeleypectation values over appropriate subsystems of the nano-
WCA and LJ nanofluids using the simplified formula, Eq. system.
(2.3), of the PG transport theory of inhomogeneous fluids |5 the context of the viscosity calculations this means in
and a number of heuristic expressions. We proved that thgarticular, that the PG theoretical expression, @), sup-
simplified PG expression supplies numerically reasonablgjies the expectation values of the local nanofluid viscosity
and physically meaningful values of the model nanofluid vis-in a slit pore. When the pore is of several molecular diam-
cosities in all the case studies, wha# the heuristic expres-  eters in width the position dependence of the confined fluid
sions fail This result is supported by the conclusions drawnyiscosity cannot be measured directly; rather, one can mea-
upon analysis of the streaming velocity profiles of the Poi-syre the average pore viscosity, and then compare the results
seuille flow of the model nanofluids recovered in the processyith those obtained by averaging the expression for the local
of the NEMD simulations. The PG theoretical ViSCOSity SUp-pG Viscosity over the pore cross-section. When the system
plies a quantitatively accurate description of the flow prop-size grows the theoretical expectation values approach the
erties and reflects major tendencies in the flow behavior. Unmeasurab|e average values. For studied nanofluid Systems
fortunately, due to the nature of the simulation methods, thepis happens when the pore width exceeds ten molecular di-
NEMD simqlations cannot provide actual values of the transameterg10,11). For such wider pores the PG expressions for
port coefficients of fluids by means other than the use ofransport coefficients redud@] to those of the bulk fluids
heuristic formulas similar to those of Eq@l.4—(4.9. Un-  [21].
less another development of a rigorous statistical mechanical | qur simulation studies we recovered the contact values
theory similar to the PG theory is undertaken, such formulagf the pair correlation functions of the model nanofluids
are bound to involve intuitive considerations that are builtyithin the statistical error of about 20%, and the PG theoret-
upon the knowledge gained mainly from the studies of theca| viscosity and the streaming velocity profiles within the
transport behavior of homogeneous or weakly inhomogestatistical error of about 15%. Further simulation studies are
neous fluids. Such fluids are macroscopically isotropic, angeeded to reduce these errors and also to consider applica-

therefore, the contributions into the transport properties ofions of the PG transport theory to other types of nanofluid
number density and correlation functiorese “smoothed.”

This means that for such fluids the details of the local fluid
structure are not manifested dramatically in the fluid trans-
port properties. The author thanks K. E. Gubbins for useful discussions,
Contrary to the case of the weakly inhomogeneous fluidsand E. Kontar and Ya. Tkach for technical assistance and
for dense, strongly inhomogeneous fluids and nanofluids isystem support. This research was supported by a grant from
particular, the dramatical variations in the fluid structure fac-the Civilian Research and Development Foundation.
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